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Radar cross section prediction for coated objects is an important problem with
many practical applications. The method of moments is applied to solve the electro-
magnetic scattering from dielectric/magnetic coated perfect conductors with arbitrary
geometries. The governing equations are derived by making use of the equivalence prin-
ciple and the dyadic formulation of Huygens’ principle. Matching boundary conditions
then generates a set of integro-differential equations with the equivalent electric and
magnetic surface currents as the desired unknowns. Triangular patch modelling is ap-
plied to the boundary surfaces. The method of moments with a bi-triangular subdomain
basis is used to convert the set of integro-differential equations into a matrix equation
which can be solved by matrix inversion for the unknown surface current coefficients.
Huygens’ principle is again applied to calculate the scattered electric field produced
by the equivalent surface currents. Finally, the far-field monostatic radar cross section
is calculated from the scattered electric field to perform the radar cross prediction for
coated perfect conductors with arbitrary geometries. The governing equations for both
completely coated and partially coated perfect conductors are derived. The coatings
may have any arbitrary complex permittivity and/or permeability. Radar cross section
measurements of various coated and uncoated square aluminum plates also have been
made to validate the theoretical predictions. Comparisons between the predicted and
measured data are made. The concepts for the generalization to multi-layered coatings
also are discussed.
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Chapter 1

INTRODUCTION

1.1 Electromagnetic Scattering

Radar cross section (RCS) prediction is currently an active research area [1-31].
It has been known for nearly 100 years that objects reflect radio waves. But with the
increasing use of radar since World War II, the determination of the electromagnetic
scattering from an object illuminated by an incident plane wave has generated great
practical and academic interest. References [1] through [123| are a small survey of the
current literature addressing this research topic, and these references demonstrate the

ongoing investigations into electromagnetic scattering.

The ultimate objective in this research area is to develop a general electromag-
netic wave scattering model for arbitrary targets. These arbitrary targets could be
perfect conductors or penetrable bodies. They could also be perfect conductors coated
with dielectric and/or magnetic materials. Further, they could have any geometric
shape. As Knott [33] and Senior [25] point out in their respective surveys of RCS pre-
diction techniques, electromagnetic scattering problems fall naturally into three cate-
gories according to body size: the low-frequency, resonant, and high-frequency regions.
These regions do not refer to the actual frequency used, but to the size of the target
with respect to wavelength. When the object is much smaller than the wavelength, all
parts of the body are strongly coupled to each other. The electromagnetic scattering
depends only slightly on shape and varies with the fourth power of the frequency [33].
Shape details are too small to resolve because the wavelength is too long. When objects
are between approximately one and ten wavelengths in size, they lie in the resonance
region. All parts of the body interact with each other. Finally, a target larger than

approximately ten wavelengths is in the optical region. The scattering mechanisms

T SR IR I e e A A" " ® . vt ntw AN e e "w L e - e ‘ot et TN
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are highly localized, and the various target elements typically act independently of one

another except for the shadowing of one element by another.

1.2 Theoretical Approaches

Several approaches to the prediction of electromagnetic scattering are apparent
from the literature. The approach taken depends on the target size with respect to
wavelength, as discussed in the previous paragraph. The high frequency techniques are
the asymptotic theories of geometrical optics (GO) [32,33,75,76] and physical optics
(PO) [33-36,75,76]. To compensate for deficiencies in the GO theory, an extension has
been developed by Keller known as the geometric theory of diffraction (GTD) [33,37-
46,75,76]. Similarly, Ufimtsev developed an extension for physical optics known as the
physical theory of diffraction (PTD) [33,41,45,47,48,75,76]. These will be discussed in
more detail below. The low frequency techniques are the numerical theories of the
method of moments (MOM) (33,60-110] and the finite element method [17]. The num-
ber of unknown surface current coefficients limits the size of target which can be handled
due to computer storage and processing limitations. As computer storage and process-
ing capabilities continue to expand in the future, the upper frequency at which these
numerical techniques can be used will increase proportionately. Additionally, hybrid
methods (75,76,89-98] have been devised which merge GTD and MOM [75,76,89-92,94]
or PTD and MOM [75,76,93|. These approaches are designed to use each technique on

the respective regions of a target where that particular technique has its best predictive

capability.

1.3 Geometrical Optics

For the calculation of electromagnetic scattering at high frequencies (where the
dimensions of the target are large with respect to wavelength) the asymptotic theories

have been developed. The oldest and most familiar theory is geometrical optics (GO)

which is also known as ray tracing [32,33,75,76). The basic assumption of GO is that
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energy propagates along slender tubes (rays). Since the field components are transverse
to the direction of propagation, GO solutions are not valid near discontinuities such
as edges. Implicit in this method is the need to find the specular point on the body
where the reflection occurs, for it is the principal radii there that govern the spreading
of the rays away from the body. If this point is too close to an edge, the assumed feld
structure no longer satisfies the assumptions of the method. One failure of GO is that
it predicts an infinite RCS for a flat or singly curved surface where one or both radii

of curvature is infinite. This failure can be overcome by the theory of physical optics.

1.4 Physical Optics

Physical optics (PO) [33-36,75,76] uses a GO approximation of the fields induced
on a body surface and integrates the induced fields to obtain the scattered field. The
induced surface fields can be approximated for nonconducting as well as conducting
surfaces. If the scattering direction varies too much from the specular direction, PO
fails by wider margins to yield the correct scattering behavior. Further, the integrals
of PO can be evaluated exactly for only a few cases that include flat plates, cylinders,
and spherical caps viewed at axial incidence. Targets can be modelled as a grouping
of structural features for which PO solutions exist. Thus, PO is restricted to the high

frequency region where interactions between major structural features of the target are

minimal.

1.5 Geometrical Theory of Diffraction

As mentioned previously, the geometrical theory of diffraction (GTD)[33,37-
46,75,76] and the physical theory of diffraction (PTD) [33,41,45,47,48,75,76| were de-
veloped by Keller and Ufimtsev, respectively, as extensions to GO and PO. Unlike GO,
in which the specular direction is unique, GTD permits diffracted rays to lie along any

of the generators of a forward cone whose apex lies at the local point of edge diffraction.

The GTD estimates of the field at a point on a diffracted ray depend on the distance
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from the edge and upon the local angles of arrival and departure. Using this approach,
GTD compensates for edge diffraction whereas GO cannot. As in GO, one need only
sum all the rays reaching the point of observation.

Since GTD is a ray tracing technique it suffers from a serious drawback. At the
transitions between the shadow regions and the illuminated regions the GTD approx-
imations produce singularities. The uniform theory of diffraction (UTD) (49-51] and
the uniform asymptotic theory of diffraction (UAT) (50,52-59] are current attempts to
compensate for this error. The uniform theories overcome the transition region sin-
gularities at reflection and shadow boundaries. However, at points where an infinite
number of rays converge (caustics) all of these high frequency techniques predict infi-
nite fields. Further, none of the high frequency techniques can account for the surface
traveling wave phenomenon. This is because these methods treat localized scattering

phenomena, while the surface traveling wave involves the entire surface.

1.6 Physical Theory of Diffraction

Analogous to the relation between GTD and GO is the relation between the
physical theory of diffraction (PTD) and PO. Ufimtsev recognized that the PO theory
was inadequate in many instances, particularly when the scattering direction is far
from the specular direction [33]. He postulated the existence of a “nonuniform” (edge)
current in addition to the “uniform” (physical optics) surface current. This edge current
is designed to compensate for the departure of the target structure from the assumptions
implicit in the PO theory. Such departures include shadow houndaries and geometrical
discontinuities such as edges. PTD attempts to modify PO when there are surface

discontinuities where diffraction becomes important.

1.7 Method of Moments and Finite Element Method

For the calculation of electromagnetic scattering at low frequencies or the res-

onance region (where the dimensions of the target are on the order of a wavelength)
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. the numerical theories of the method of moments (MOM)[33,60-110] and the finite el-
ement method {17] have been developed. The MOM basically solves the integral form
of Maxwell’s equations numerically for the surface currents induced on a scatterer by
: an incident plane wave. The finite element method numerically solves the differential
: form of Maxwell’s equations throughout the region of interest. For both methods the
number of unknowns to be calculated limits the size of the target which can be handled
due to computer storage and processing limitations. Hence, their designation as low
frequency techniques. For more detail on the MOM approach see the next section.

This thesis is an application of the MOM numerical technique to an arbitrary
target as defined above. Rao, Wilton, and Glisson [81] have used this approach for
perfectly conducting targets with arbitrary geometries. They used triangular patches
to constrict arbitrary targets. They then defined a set of basis functions [64,81] which,
when combined with triangular patch modelling, greatly simplify the equations for the
electric surface currents.

Medgyesi-Mitschang, et al [71,73] have applied the MOM to coated perfectly
: conducting and penetrable targets. However, the targets must be bodies of revolu-

tion (BOR) and cannot have arbitrary geometries. Using only BORs provides a great

ad a_B

simplification in the equations and computations for the surface currents due to the
symmetry of the target.

This thesis is an attempt to lay the theoretical foundation for the prediction of
the radar cross section of coated perfect conductors with arbitrary geometries. Chapter
2 briefly discusses the method of moments and its application to coated targets with
arbitrary geometries. Chapter 3 provides the problem formulation and the method of
solution. A description of the experimental RCS measurements is contained in Chapter
4. Chapter 5 presents the results of the experimental RCS measurements and the
A theoretical RCS predictions. A comparison of the experimental RCS measurements and

the theoretical RCS predictions is also contained in this chapter. Chapter 6 outlines the

- .

generalization to multi-layered coatings of the approach used in this thesis to compute

the RCS for a single layer of coating. Finally, Chapter 7 contains the conclusions and

suggested future efforts.
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Chapter 2

METHOD OF MOMENTS

2.1 Introduction

The method of moments (MOM) approach has the advantage that the governing
integro-differential equations to which the MOM is applied are exact solutions to the
electromagnetic scattering problem. The interactions of all the structural elements of
the target are accounted for. Further, since the MOM solves for the induced surface
currents explicitly, the MOM has application to near-field (electromagnetic compata-
bility) as well as far-field (RCS) phenomena. Disadvantages include the large number
of unknowns to be calculated (n) for most practical problems and the inversion of an
n X n matrix. Alternatively, the n equations in n unknowns may be solved iteratively
(28,60,85].

The integral equation formulation for electromagnetic scattering from a target
(Huygens’ Principle) is exact. The MOM reduces these integro-differential equations
to a matrix equation by dividing the target surface into subdomains. The matrix
equation represents each subdomain’s interaction with every other subdomain. The
solution (surface currents and charges) can be found by inverting the interaction matrix
and multiplying it by the column vector that is related to the incident field at each
surface element. The scattered field is then computed by summing the surface current
and charge distributions in a radiation integral. Typically, the integral is for the far-
field scattering (RCS), but the field at an arbitrary point in space can be calculated
(electromagnetic compatability, near-field RCS, etc.). This feature makes the MOM a
very powerful tool with which to conduct detailed investigations of scattering behavior,

and the MOM can provide insights into the most critical target element interactions

that should be accounted for in the high frequency techniques discussed previously.
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2.2 Variations and Alternatives

| Several variations and alternatives in the MOM are apparent in the literature.

Various approaches to surface modeling of the target have been suggested [99-110],

and each has applications to recommend its use. Two of the more popular methods of
x surface modeling are the wire grid (82,100,103 and the surface patch [81] models. The
target is represented as a mesh of wire grids or a patchwork quilt of surface patches.
Their popularity stems from the complexity of the targets that can be constructed
from these subdomains. If the MOM is applied to the expression for the electric field
- in Huygens’ principle, the method is known as the electric field integral equation (EFIE)

formulation. If the MOM is applied to the corresponding magnetic field expression in

Huygens’ principle, the method is called the magnetic field integral equation (MFIE)
| formulation. The EFIE formulation [69-73,75,76,78,81,88| can be used for open and
closed surfaces. The MFIE formulation [69-73,75,76,78,81,88] can be used only for
- closed surfaces. However, the EFIE and MFIE will give erroneous results near the
internal resonance frequency of a closed structure using the MOM (69-73,81,88|. The
combined field integral equation (CFIE) [69-73,75,76,78,81,88] is a linear combination

CXCa,

of the EFIE and MFIE which gives valid results near the internal resonance frequency
(19,58,67]. Another variation in the MOM is the merger of the MOM with GTD and
PTD high frequency techniques, as described in the previous chapter {75,76,89-98].
To predict the electromagnetic scattering from treated perfectly conducting tar-
gets the approximate boundary condition (ABC) approach has been developed for use
with the MOM. A coated target is one which has a dielectric/magnetic coating. Spe-
A cific research areas within the ABC numerical theory are the impedance boundary
condition (IBC) [111,115,117-122], the resistive boundary condition (RBC) [120-123|,
and its analog the magnetic boundary condition (MBC) [117-122]. In each of these

: approaches the coating is approximated by modeling the perfect conductor as an equiv-

alent impedance/resistance.
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2.3 Coated Target With Arbitrary Geometry

This thesis is an application of the MOM numerical technique to a coated target
with arbitrary geometry as defined in Chapter 1. Rao, Wilton, and Glisson [81] have
used this approach for perfectly conducting targets with arbitrary geometries. They
used triangular patches to construct arbitrary targets. They then defined a set of
basis functions [64,81] which, when combined with triangular patch modelling, greatly
simplify the equations for the electric surface currents.

Medgyesi-Mitschang, et al [71,73] have applied the MOM to coated perfectly
conducting and penetrable targets. However, the targets must be bodies of revolu-
tion (BOR) and cannot have arbitrary geometries. Using only BORs provides a great
simplification in the equations and computations for the surface currents due to the
symmetry of the target.

Applying the MOM to a three-dimensional coated target will produce three
times the number of unknowns to be calculated as compared to a perfectly conducting
target. For a perfectly conducting target the electric surface current density is required

to calculate the electromagnetic scattering. In the MOM, this electric surface cur-

rent density is represented by the n basis functions over the n subdomains (triangular

patches). For a coated target (perfect conductor) the electric and magnetic surface cur-
rent densities over the outermost surface are required to calculate the electromagnetic
scattering. To calculate these current densities, the electric surface current density
on the perfect conductor is also required (magnetic current density equals zero on the
perfect conductor). In the MOM, each of these three current densities is represented by
n basis functions over the subdomains. Thus, there will be three times the number of
unknowns to be calculated as compared to a perfectly conducting target. This increase
in the number of unknowns inherently reduces the upper frequency or size of target
for which the electromagnetic scattering can be calculated (as compared to a perfectly

conducting target) due to the computer limitations discussed previously.




A Chapter 3. Problem Formulation and Method of Solution 22

: Chapter 3

PROBLEM FORMULATION AND METHOD OF SOLUTION

3.1 Introduction

This thesis problem involves calculating the electromagnetic scattering (radar

cross section) from a coated perfect conductor with arbitrary geometry. Figure 3.1

illustrates the problem. An assumed plane wave is incident on the target. Equiva-

lent electric and magnetic surface currents (J; and M, respectively, in Figure 3.1) on

the outer surface of the target are calculated using the method of moments. These

calculated equivalent surface currents are then used to compute the scattered electro-

magnetic field and, ultimately, the monostatic radar cross section (RCS) of the coated

target. Figures 3.1 and 3.2 illustrate the problem for a completely coated perfect con-

ductor, and Figure 3.3 is an illustration of the problem for a partially coated perfect

conductor. For the partially coated perfect conductor, equivalent electric and magnetic

. surface currents (J1 and M, respectively, in Figure 3.3) on the outer surface of the

z coating and an equivalent electric surface current (J in Figure 3.3) on the outer surface

3 of the exposed perfect conductor are calculated using the method of moments. Again,

these calculated equivalent surface currents are then used to compute the monostatic

) RCS of the partially coated target. A detailed derivation of the governing equations
l for both of these cases is provided in Appendix A.

Throughout this thesis only the monostatic RCS will be computed and discussed.
However, the bistatic RCS could have been calculated just as readily. One of the
elegances of the method of moments lies in the fact that once the equivalent electric and
magnetic surface currents have been calculated, all desired electromagnetic scattering

phenomena can be computed. This includes near-field as well as far-field scattering.

For the completely coated perfect conductor shown in Figure 3.1, the target con-
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sists of an inner core and an outer core, each of which can be of arbitrary geometrical
shape. The inner core of the target is assumed to be a perfectly conducting surface.
Surrounding this inner core is a coating which completely encloses the perfect conduc-
tor. The coating can have a complex permittivity, ¢, and/or a complex permeability,
#. The complex permittivity and permeability correspond to dielectric and magnetic
materials, respectively, with loss.

For the partially coated perfect conductor shown in Figure 3.3, the target con-
sists of a perfectly conducting object of arbitrary geometrical shape which is partially
coated by a material of arbitrary geometrical shape. Again, this material can have a
complex permittivity, ¢, and/or a complex permeability, u.

The remaining sections of this chapter discuss in greater detail the formulation of
the problem and the method chosen to calculate the RCS for coated perfect conductors

with arbitrary geometries.

3.2 The Approach

The approach to the solution of this problem is one of using the equivalence
principle to replace the target with an equivalent set of electric and magnetic surface
currents. The equivalent problem to the target illustrated in Figure 3.1 is shown in
Figure 3.2. The region inside the coating is replaced with the equivalent electric surface
current, J;, and the equivalent magnetic surface current, M;, as shown in the left half
of Figure 3.2. The electric and magnetic fields inside the coating are now in the region
of no interest and are, therefore, assumed to be identically zero. Since the fields in the
region of no interest are zero, the permittivity and permeability are assumed to be that
of the surrounding free space, which results in an homogeneous, unbounded medium.

The right half of Figure 3.2 demonstrates the remainder of the equivalence prin-
ciple. The region outside the coating is replaced by the equivalent electric surface
current, J{, and the equivalent magnetic surface current, M{. The perfect conductor is
replaced by an equivalent electric surface current, J;. No equivalent magnetic surface

current is required at the surface of the perfect conductor since the boundary condi-
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tion at the surface of the perfect conductor requires the tangential electric field, and
hence the equivalent magnetic surface current, to equal zero. Now the region of no
interest becomes the volume outside the surface of the coating and inside the surface
of the perfect conductor. As before, the electric and magnetic fields in the region of
no interest are assumed to be zero, and, therefore, the permittivity and permeability
of the region of no interest are assumed to be that of the coating. This again results
in an unbounded homogeneous medium.

The next step is to satisfy the boundary conditions. At the surface of the
coating, the tangential electric field is continuous and the tangential magnetic field is
continuous. At the surface of the perfect conductor, the tangential electric field is zero
and the tangential magnetic field is equal to the induced electric surface current, J,.
Now, the total fields outside the coating equal the incident fields plus the scattered
fields. The scattered fields can be expressed in terms of J, and M, using Huygens’
principle [128]:

E,(r) = ]{S ' ds'{iwﬁ(r, ) - [ x B(F)] + Y x G(F, ) - [ x E(i")]} (3.1)

and

H,(F) = }(s , ds'{—iweﬁ(r,#) - [a x E(F)) + V x G(£,7) - [ x ﬁ(r')]} (3.2)

where (i X H(#)] = J and [ x E(¥)] = —M. The above expressions are the dyadic
formulation of Huygens’ principle, and G is the dyadic Green's function which is defined
in Appendix A. S’ is the surface of the scatterer. Further, the fields inside the coating
can be expressed in terms of J{, Mj, and J; using Huygens’ principle. Satisfying
the boundary conditions yields a set of integro-differential equations (see Appendix
A) in terms of the incident electric and magnetic fields and the unknown electric and
magnetic surface currents.

The method of moments is now applied to the set of integro-differential equations

which express the boundary conditions. This results in a matrix equation of the form
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V = Z .1. For more detail, see Appendix A. V represents the incident electric and
magnetic field excitation vector at the boundary surfaces. T represents the unknown
electric and magnetic surface curren: coefficients. Z represents the interaction matrix
for all the triangular patches used to model the surfaces (see Section 3.3). The unknown
surface current coefficients, I, can now be obtained by inverting the Z-matrix and
multiplying the excitation vector, V, by this inverted Z-matrix, ?_1 I1= 7_1 V.

Once the unknown surface current coefficients are computed, it is desired to
compute the scattered electric field, E,, and, ultimately, the monostatic RCS, o. The
surface current coefficients are used with the appropriate basis functions and substi-
tuted into Huygens’ principle to compute the scattered electric field. For the completely
coated perfect conductor, only the surface current coefficients for the coating are re-
quired to compute the scattered electric field. The target has now been replaced with

an equivalent set of electric and magnetic surface currents as shown in the left side of

Figure 3.2. The far-field approximation to Huygens’ principle is made:

E, (F) = fwuo{é(Rlo + R2¢) + $(R1¢ - Rzo)} (3.3)
where
R~ etor / dS! Ty (F)e k¥ (3.4)
1= 47r 5{ 11 ¢ )
and

ikor
== € € ’ =4 —iko-f’
Ry~ ‘/—“O — /S { dS! My (F)e (3.5)

in the radiation zone. After the scattered electric field is computed in the backscatter

direction, the monostatic RCS, o, is calculated using the following formula:

2

o= lim 47nr?
r—+00

(3.6)

tnc

Finally, the monostatic RCS in decibels referenced to 1 square meter (dBsm) is com-

puted as

B T
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1m?

To handle the case of a partially coated perfect conductor, the only modification

to the approach outlined above which is required is to replace the target with three
equivalent surface currents instead of the two used previously. The coated portion of the
target is replaced with an equivalent set of electric and magnetic surface currents, (J;
and M,, respectively, over surface S; in Figure 3.3), and the exposed perfect conductor

is replaced with an equivalent electric surface current, (J2 over surface Sy in Figure

3.3). The scattered field then becomes

E,(F) = iwpo{é(RM + R4¢) + $(R3¢ - R.w)} (3.8)
where
5 etkor 1 (ot —iko-F 1T [ty —iko-#
R3 ~ dS; Ji(7)e + | dS;J2(F)e (3.9)
47y S: S;
and

E tko" E ?l
&~ ds; M e o 3.10
Ri= V uo 4rr /s' 1 M (3.10)

in the radiation zone. The monostatic RCS is then computed using equations (3.6) and
(3.7), as before.

3.3 Surface Modeling

To model the arbitrary geometry of the surfaces of the coating and perfect con-
ductor, the triangular patch model of Rao, Wilton, and Glisson [81] is used. The
motivation and justification for this triangular patch model is provided in Reference
[81]. For the purposes of this thesis, the motivation for using triangular patch mod-
eling is that almost any arbitrary geometry (singly and doubly-curved surfaces) can

be modelled using triangular subdomains. Figure 3.4 displays a cylinder modelled us-

ing triangular subdomains. Further, various coatings or an homogenous coating with
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variable thickness over the surface of the perfect conductor can be modelled with the
appropriate triangularly patched surfaces. Thus, this triangular patch modelling in
conjunction with the basis function over the bi-triangular subdomain used by Rao,
Wilton, and Glisson [81], the method of moments, the equivalence principle, Huy-
gens’ principle, and the appropriate boundary conditions permit the RCS prediction
for coated perfect conductors with arbitrary geometries. The bi-triangular subdomain
of the basis function is shown in Figure 3.5, and more detail on the basis function is

contained in Appendix A.

3.4 Computer Programs

A flowchart of the computer programs written to implement the procedures
described in Section 3.2 is presented in Appendix B. It is not a flowchart of the individ-
ual computer programs, but a flowchart to show the progression through the electric
field integral equation (EFIE) series of computer programs used to calculate the de-
sired far-field RCS patterns. Appendix B also contains a brief description of the EFIE
programs.

Program EFIE1 translates condensed, user-supplied geometry specifications into
EFIE usable data. This program automatically breaks the described surface into trian-
gular patches (see Figure 3.4) and does the bookkeeping for such items as coordinates
of nodes, which nodes form which edges, which edges form which triangular faces, etc.
All of this information is then placed into the output file labelled STORAGE.DAT.
The EFIE series of computer programs assume an excitation frequency of 300 mega-
hertz, which gives a free space wavelength of one meter. Thus, all target geometry
specifications are normalized to wavelength.

Program EFIE2C calculates the symmetric Z-matrix for the completely coated
perfect conductor. The inputs to this program are the STORAGE.DAT file generated
by EFIE1 for the perfect conductor, and the CSTORAGE.DAT file (renamed from
STORAGE.DAT) generated by EFIE1 for the coating. The output of EFIE2C is a
file labelled RESMAT.DAT which contains the Z-matrix. This Z-matrix is discussed
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in detail in Appendix A. Since the Z-matrix is symmetric and, therefore, equal to its
transpose, only half the Z-matrix is stored in RESMAT.DAT.

Program EFIE2PC calculates the symmetric Z-matrix for the partially coated
perfect conductor. The inputs to this program are the STORAGE.DAT file generated
by EFIE1 for the coated portion of the perfect conductor, the KSTORAGE.DAT file
(renamed from STORAGE.DAT) generated by EFIE1 for the exposed portion of the
perfect conductor, and the CSTORAGE.DAT file (renamed from STORAGE.DAT)
generated by EFIE1 for the coating. The output of EFIE2C is a file labelled RES-
MAT.DAT which contains the Z-matrix. This Z-matrix is discussed in detail in Ap-
pendix A. Since the Z-matrix is symmetric and, therefore, equal to its transpose, only
half the Z-matrix is stored in RESMAT.DAT.

Program EFIE3 inverts the symmetric Z-matrix stored in RESMAT.DAT. The
Z-matrix is inverted by the technique of border inversion. The input to EFIE3 is the

=—1

RESMAT.DAT file. The output of EFIE3 is the inverted Z-matrix, Z , which is
placed into the RESMAT.DAT file.

Program EFIE5SBC computes the scattered electromagnetic field, E,, far-field
radiation pattern from the equivalent electric, J;, and magnetic, M;, surface current
distributions of the completely coated perfect conductor. A plane wave is assumed
to excite the target, and the equivalent surface currents are computed by multiplying
the excitation vector by the inverted Z-matrix. Then, the scattered electric field is
calculated only in the backscatter direction for the desired, user-specified angles us-
ing equations 3.3 through 3.5. The inputs to EFIESBC are the inverted Z-matrix,
RESMAT.DAT, and the coating geometry data, CSTORAGE.DAT. The output file,
SPATTERN.DAT, contains the far-field radiation pattern versus the desired angles.

Program EFIESPC computes the scattered electromagnetic field, E,, far-field
radiation pattern from the equivalent electric, J, and J2, and magnetic, M), surface
current distributions of the partially coated perfect conductor. A plane wave is assumed
to excite the target, and the equivalent surface currents are computed by multiplying

the excitation vector by the inverted Z-matrix. Then, the scattered electric field is

calculated only in the backscatter direction for the desired, user-specified angles us-
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ing equations 3.8 through 3.10. The inputs to EFIESPC are the inverted Z-matrix,
RESMAT.DAT, the coating geometry data, CSTORAGE.DAT, and the exposed per-
fect conductor geometry data, KSTORAGE.DAT. The output file, SPATTERN.DAT,
contains the far-field radiation pattern versus the desired angles.

Program EFIESR calculates the far-field RCS pattern from the scattered electric
field pattern. Equations 3.6 and 3.7 are used to compute the monostatic RCS, o, for
each user-specified angle. The input to EFIES5R is the file RPATTERN.DAT (renamed
from SPATTERN.DAT). This program is interactive, and the output is available in a
variety of forms. The RCS plots versus desired angle can be displayed on a graphics
terminal or written into the file HDCOPY.PLT for printing. Further, the file DPAT-
TERN.DAT is created which contains the RCS data versus angle.

Program EFIE5V presents the geometry information in user viewable form. This
is an interactive program which will display the geometry created on a graphics terminal
or write geometry information into the file HDCOPY.PLT for printing. The input is a
file called RESULT.DAT (renamed or copied STORAGE.DAT, KSTORAGE.DAT, or
CSTORAGE.DAT file). Figure 3.4 was generated using this program.

The author wrote the EFIE2C and EFIE2PC programs described above, and
modified EFIESB (provided by Group 44 at MIT Lincoln Laboratory) to produce the
EFIE5BC and EFIE5PC programs. Additionally, the author modified versions of the
EFIESR and EFIE5V programs to produce the outputs described. The remainder

of the programs were generously provided for the author’s use by the MIT Lincoln

Laboratory.

3.5 Numerical Integration Over Triangular Subdomains

To calculate the elements of the interaction matrix, 7, an integration of sev-
eral types of functions over each triangular patch is required as shown in Appendix A,
equations A.106 through A.114 and A.201 through A.216. Since the basis functions
used only exist over the bi-triangular subdomains, the integration of these functions is

performed over each subdomain. The integration of these functions over the triangular

-------------------
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patches is accomplished numerically using a quadrature technique for surface integra-

tion over a triangular surface. Three types of numerical integrations are required:

, etkoRE,

" drF o RE (3.11)

and
o ictkoRi

r* dr Pn m (3.12)

and
ikoRE
dr'pE x (Fof — 7')(1 — ikoRE) s (3.13)
T (Rm)

Appendix C discusses the seven-point numerical integrations used to compute
the integrals shown in 3.11, 3.12, and 3.13. Each of these integrals has a singular-
ity which must be considered when the source triangle and the observation trian-

‘ E3
gle are the same triangular patch, m = n. The integration of [« dr' gt e :am and

ikgRE

f T dr ‘—ﬁf"‘- are accomplished in subroutine NINT7 of FORTRAN program EFIE2PC
listed in Appendix D, and the integration of ant dr' ﬁf-‘fg—gﬁ and fo df’ L‘:m%ﬁ are
accomplished in subroutine NINT7A of EFIE2PC. The seven-point numerical inte-
gration scheme used is discussed in Chapter 3 of Kiang’s thesis [124], and will not
be repeated here. Further, Kiang’s thesis discusses the effects of various triangular
patch shapes on the computation of the scattering from perfect conductors. The
integration of [r+ dF'p% x (Frf — #)(1 - ikoRﬁ)E(;%n—f‘; is accomplished in subrou-
tine NINT7B of FORTRAN program EFIE2PC (Appendix D), and the integration
of fT,f drigt x (FE —- 7)1 - iklR,ﬁ)‘T‘;‘fI;—i‘- is accomplished in subroutine NINT7C
of EFIE2PC. The seven-point numerical integration over the triangular patches is an
adaptation of the numerical quadrature technique discussed in reference {125). The
values used in the quadrature integration can also be found in Abramowitz and Stegun

[126] on page 893.
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Figure 3.1. The Problem

Figure 3.2. Equivalent Problem
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Figure 3.3. Partially Coated Perfect Conductor
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Chapter 4

EXPERIMENT

4.1 Introduction

Experimental data were collected at the MIT Lincoln Laboratory Group 95
Radar Cross Section (RCS) Measurement Facility. RCS data were collected from square
aluminum plates, some coated with radar absorbing material and some without. Sec-
tion 4.2 presents a brief description of the RCS Measurement Facility, and section 4.3

describes the data which were collected.

4.2 Radar Cross Section Measurement Facility

A block diagram of the MIT Lincoln Laboratory Group 95 RCS Measurement
Facility apparatus used to collect the RCS data presented in this thesis is shown in
Figure 4.1. The operating frequency of this radar is approximately 2.5 gigahertz (GHz)
to 8.0 GHz. As shown in the block diagram, this is a pulsed radar system. The
transmitted pulse is approximately 20 nanoseconds in duration, and the received pulse
is approximately 40 nanoseconds in duration. The pulse repetition frequency of the
radar is seven megahertz. The received pulses are averaged for 40 milliseconds. The
quoted noise threshold for this radar is ~60dBsm.

A block diagram of the RCS data collectic.a process is shown in Figure 4.2. A
styrofoam mount is used to hold the target in the desired position. With the styro-
foam mount in position and no target on the mount, a background measurement is
performed. The styrofoam mount can be rotated azimuthally 360 degrees in one-half

degree increments, if desired. An RCS measurement of the background is taken at the

desired angle increments. This background measurement is subtracted from all succes-
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sive measurements to arrive at the measured RCS of the target. Next, a calibration
sphere is placed on the styrofoam mount. RCS measurements are performed at the de-
sired angle increments to verify the calibration of the radar system. Now, the desired
target is placed into the radar chamber. It is positioned on the styrofoam mount so
the desired cut will be obtained as the styrofoam mount is rotated azimuthally. Again,
RCS measurements are taken at the desired angle increments. Finally, the calibration

process is repeated to verify the radar system performance.

4.3 Data Collection

As mentioned in the introduction, RCS data were collected from square alu-
minum plates, some coated with radar absorbing material and some without. Those
plates coated with radar absorbing material were only coated on one side (partially
coated perfect conductors). The plates were mounted on styrofoam. The styrofoam
mount was then rotated azimuthally 360 degrees in one degree increments, and the RCS
measurements were obtained at each of these angles. Table 4.1 lists the data collected,

and the RCS plots corresponding to this table can be found in Appendix E.

RCS data were collected from square aluminum plates which were 32 mils (0.032
inches = 0.8128 mm) thick. See Table 4.1. Two sizes of aluminum plates were used.
The first size was 10 cm by 10 cm which is one wavelength by one wavelength at
a frequency of 3.0 GHz. The second size plate was 15 cm by 15 cm which is three
wavelengths by three wavelengths at 6.0 GHz. RCS data were collected at 3.0 GHz
and at 6.0 GHz. Two different polarizations of RCS data are shown in Table 4.1
and Appendix E: horizontally transmitted and horizontally received RCS data; and
vertically transmitted and vertically received RCS data. The horizontally transmitted
and horizontally received RCS data corresponds to the VV entries in Table 4.1 and the
SIGMA-VYV versus angle RCS plots in Appendix E. This is because the aluminum plate
was chosen as the reference, and the aluminum plate was mounted in a vertical position
on the styrofoam mount. The styrofoam mount was then rotated azimuthally for the

RCS measurements. Therefore, VV corresponds to a vertically polarized electric field
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for the incident wave and a vertically polarized electric field for the scattered wave with
respect to the edge of the plate. Similarly, the vertically transmitted and vertically
received RCS data corresponds to the HH entries in Table 4.1 and the SIGMA-HH
versus angle RCS plots in Appendix E. Therefore, HH corresponds to a horizontally
polarized electric field for the incident wave and a horizontally polarized electric field for
the scattered wave with respect to the edge of the plate. There is no cross-polarization
return for the RCS pattern cuts measured due to symmetry.

Three different radar absorbing materials were used to coat the square aluminum
plates: Eccosorb FDS, Eccosorb SF 6.0, and Eccosorb FGM 40 (Eccosorb is a registered
trademark of the Emerson and Cuming Division of the W. R. Grace and Co.). The
three types of coating, along with some of the specifications for each as provided by the
manufacturer, are shown in Table 4.2. Eccosorb FDS is a silicone rubber based material
which was purchased in one foot by one foot sheets. More information on Eccosorb
FDS may be found in Table 4.3 and Technical Bulletin 2-22A and Folder 819-91 from
the manufacturer. The information in Table 4.3 was taken from this technical bulletin.
Eccosorb SF 6.0 is also a silicone rubber based material which was also purchased in one
foot by one foot sheets. It is cut for a resonance frequency of 6.0 GHz. More information
on Eccosorb SF 6.0 may be found in Technical Bulletin 8-2-18 from the manufacturer.
Finally, Eccosorb FGM 40 is a ferrite loaded silicone based rubber material which
was purchased in one foot by one foot sheets. More information on Eccosorb FGM
40 may be found in Technical Bulletin 8-2-23 from the manufacturer. Specifications
comparable to those listed in Table 4.3 for Eccosorb FDS were not available in the
respective technical bulletins for Eccosorb SF 6.0 and Eccosorb FGM 40.

The radar absorbing materials used were chosen for the frequency at which the
RCS data were collected. Since the method of moments is a relatively low frequency
technique (dimensions of the object relatively small or comparable to the wavelength
of interest), a compromise was made between the size of the aluminum plates used, the

frequency of the RCS measurements, and the type of radar absorbing materials used

to coat the aluminum plates. Table 4.1 represents the results of the compromise.
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Coatings used were Eccosorb radar absorbing material

Square plate targets were mounted on styrofoam

[ = radar frequency in gigahertz (GHz)

RCS measurements taken in 1° increments

Radar pulses averaged for 40 milliseconds

Radar pulse repetition frequency (PRF) = 7 megahertz

Radar pulse width: XMIT-20 nanoseconds, RCVR-40 nanoseconds

Plate Size Coating [ (GHz) Polarization

10cm X 10cm None 3.0 hh

10cm x 10cm None 3.0 vv

10cm x 10cm FDS 3.0 hh

10cm x 10cm FDS 3.0 vv

10cm SF 6.0 3.0 hh

10cm SF 6.0 3.0 vv

10cm FGM 40 3.0 hh

10cm FGM 40 3.0 vV

15¢m None 3.0 hh

15cm None 3.0 vv

15cm FDS 3.0 hh

15cm FDS 3.0 vv

15¢cm SF 6.0 3.0 hh

15cm SF 6.0 3.0 vv

15cm FGM 40 3.0 hh
15¢cm FGM 40 3.0

Table 4.1. Experimental Radar Cross Section Measurements
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Coatings used were Eccosorb radar absorbing material

Square plate targets were mounted on styrofoam

[ = radar frequency in gigahertz (GHz)

RCS measurements taken in 1° increments

Radar pulses averaged for 40 milliseconds

Radar pulse repetition frequency (PRF) = 7 megahertz

Radar pulse width: XMIT-20 nanoseconds, RCVR-40 nanoseconds

Plate Size Coating [ (GHz) Polarization
10cm x 10cm None 6.0 hh
10cm X 10cm None 6.0 vv
10cm X 10cm FDS 6.0 hh
10cm X 10cm FDS 6.0 vv
10cm X 10cm SF 6.0 6.0 hh
10cm x 10cm SF 6.0 6.0 vv
10cm X 10cm FGM 40 6.0 hh
10cm x 10cm FGM 40 6.0 vv
15cm x 15c¢m None 6.0 hh
15cm X 15¢m None 6.0 vv
15¢cm X 15cm FDS 6.0 hh
15cm X 15¢cm FDS 6.0 vv
15cm X 15¢m SF 6.0 6.0 hh
15cm x 15cm SF 6.0 6.0 Vv
15¢m x 15cm FGM 40 6.0 hh
15cm X 15cm FGM 40 6.0 \A4

Rty .‘

Table 4.1 (cont.). Experimental Radar Cross Section Measurements
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Eccosorb radar absorbing material purchased from W. R. Grace Co.

Specifications quoted from literature supplied by manufacturer

A = thickness in millimeters
Weight is in (kg/m?)

Loss = dB/cm at normal incidence (fin. = 0° )

40

Oipne = 0° f =3.0 GHz
Eccosorb A (mm) Color Weight Loss (dB/cm)
FDS 0.762 Black 2.0 -8.6
SF 6.0 2.1844 Gray 7.8 -5.0
FGM 40 1.016 Gray 4.9 -5.0
Table 4.2. Eccosorb Radar Absorbing Material Specifications
Dielectric Properties f=12GHz f=3.0 GHz f =8.6 GHz
Dielectric Constant 13 8.9 7.4
Dielectric Loss Tangent 0.15 0.07 0.15
Magnetic Permeability 2.3 1.7 14
Magnetic Loss Tangent 0.41 0.80 0.48
Attenuation (dB/cm) 3 9 16
Relative Impedance Z/Z¢ 0.4 0.5 0.5

Table 4.3. Eccosorb FDS Manufacturer Specifications
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Chapter 5

EXPERIMENTAL AND THEORETICAL RESULTS

5.1 Introduction

This chapter contains a discussion of the radar cross section (RCS) data gen-
erated at the MIT Lincoln Laboratory Group 95 RCS Measurement Facility and by
the EFIE series of computer programs. Section 5.2 describes the experimental RCS
data collected at the MIT Lincoln Laboratory Group 95 RCS Measurement Facility
as discussed in Chapter 4. Section 5.3 describes the theoretical RCS data generated
by the EFIE series of computer programs discussed in Chapter 3. Finally, section 5.4
contains a comparison of the experimental results and the theoretical results. All the
RCS plots contained in this thesis are for either partially coated or uncoated square

aluminum plates. Appendix E contains copies of all the RCS plots discussed in this

thesis.

5.2 Experimental Radar Cross Section Data

The experimental RCS measurements taken at the MIT Lincoln Laboratory
Group 95 RCS Measurement Facility are discussed in Chapter 4. Table 4.1 in Chapter
4 provides a list of the RCS measurements taken, and Appendix E contains copies
of each of the RCS plots generated from the measured data. Table 5.1 summarizes
these experimental RCS plots. As discussed in Chapter 4, the RCS measurements
were all performed on square aluminum plates. Some of the RCS measurements were
taken on uncoated plates, and some of the RCS measurements were taken on plates

which were coated on only one side with an appropriate layer of the Eccosorb radar

absorbing material corresponding to the entries in Table 4.1. The RCS was measured




AN NS RN A A S N A S N 1o S L A A A At Nt A o Rl At ek e St Sal s ALl ek Al Sadl Aol tolt Aok mad sl ded Sed and St onhand aat ial -ug 2t oni s

Chapter 5. Experimental and Theoretical Results 44

' 360 degrees around each plate at one degree increments. As mentioned in Chapter 4,
) the aluminum plates were mounted vertically on a styrofoam mount which was then

rotated azimuthally in one degree increments for the RCS measurements.

Figures E.1 through E.16 in Appendix E are the experimental RCS plots corre-
sponding to the entries in Table 4.1. These plots are summarized in Table 5.1. Two
orthogonal polarizations are displayed in the same figure. The opp polarization is on
X the top of each figure, and the oy, polarization is on the bottom of each figure. These
polarizations are explained in the next paragraph. Table 5.1 also lists the value of
the RCS at normal incidence to the coated side of the plate (¢ = 0°) for the onp

polarization.
All the experimental RCS plots in Appendix E display the RCS in decibels

referenced to one square meter (dBsm) on the Y-axis versus angle on the X-axis. The

frequency of the RCS measurement is also annotated along the Y-axis of each RCS

L YA T

plot. The o, versus angle RCS plots in Appendix E correspond to a horizontally

polarized electric field for the incident wave and a horizontally polarized electric field
S for the scattered wave with respect to the edge of the plate. Similarly, the oy, versus
2 angle RCS plots in Appendix E correspond to a vertically polarized electric field for
. the incident wave and a vertically polarized electric field for the scattered wave with
“ respect to the edge of the plate. The angle measurement on the X-axis is in degrees.

': The angle displayed on the X-axis in the RCS plots of Appendix E is theta (8)

in the spherical coordinate system. This follows naturally since the aluminum plates
0 were mounted vertically on the styrofoam mount which was then rotated azimuthally.
f.' If the plane of the plate is considered the X-Y plane, then the normal to this plane is
:" the Z-axis. Theta () in the spherical coordinate system is measured with respect to
_ the Z-axis. Thus, the amount of rotation of the styrofoam mount corresponds to the
: angle @ in spherical coordinates. Assuming the edges of the plate are parallel to the
: imaginary X-axis and Y-axis, the cut obtained is for ¢ = 0° as the mount rotates. If
h the plate is coated on one side, the angle # = 0° on the RCS plot corresponds to normal
’: incidence on the side of the plate with the coating. The angles § = +180° on the RCS
-; plot correspond to normal incidence on the uncoated side of the plate.
e
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To determine how much the Eccosorb radar absorbing material has decreased
the RCS at normal incidence, compare the o, entry in Table 5.1 for the plate with
no coating to the corresponding entry for the plate with the coating of interest. For
example, Table 5.1 shows the oxp for the 10cm by 10cm uncoated plate at 3.0 GHz is
-9.7 dBsm, the first entry in Table 5.1. Compare this to the o value of -13.3 dBsm
for the FGM 40 coated square aluminum plate at 3.0 GHz, the fourth entry in Table
5.1. The Eccosorb FGM 40 radar absorbing material decreased the RCS at normal
incidence by -3.6 dB at 3.0 GHz for the o5) polarization.

For the three different types of Eccosorb radar absorbing material measured,
Table 5.1 shows the Eccosorb FGM 40 provided the largest RCS reduction at normal
incidence to the square aluminum plate at a frequency of 3.0 GHz for the onp polariza-
tion. This is not true at a radar frequency of 6.0 GHz. The Eccosorb SF 6.0 provides
the largest RCS reduction at normal incidence to the plate at 6.0 GHz. The Eccosorb
SF 6.0 is tuned to a resonance frequency of 6.0 GHz, and it would be expected to pro-
vide the largest RCS reduction at normal incidence at this frequency if the properties
of the radar absorbing materials are comparable. Table 5.1 further shows the Eccosorb
FDS provided the smallest RCS reduction of all three radar absorbing materials at
normal incidence to the plate at 3.0 GHz and 6.0 GHz for the o, polarization. This
reduction was approximately -1 dB for both plate sizes and both frequencies listed in
Table 5.1. This is consistent with the manufacturer’s claim that Eccosorb FDS was

more effective for surface wave effects than for specular reduction.

By overlaying enlarged versions of Figures E.2, E.6, E.10, and E.14 onto Figures
E.1, E.5, E.9, and E.13, respectively, the radar absorbing properties of the Eccosorb
FDS material become more apparent. This technique was used to generate Figures
5.1 and 5.2. Figure 5.1 is a composite of the oxp curves of Figures E.1 and E.2, and
Figure 5.2 is a composite of the o curves of Figures E.9 and E.10. Figures 5.1 and
5.2 show that indeed the Eccosorb FDS radar absorbing material is more effective for
surface wave effects than for specular reduction. For example, this phenomenom is
demonstrated by the fact that for the angles between 0° and £90°, not inclusive, on

Figures 5.1, 5.2, E.2, E.6, E.10, and E.14 the amount of RCS reduction is greater than
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the RCS reduction at 0° on these figures. Again, the RCS reduction is determined by
comparison with the appropriate uncoated case.

At the angles near +90° for the opn plots in all the figures for the coated
plates, the RCS is actually larger than the RCS for the corresponding uncoated plates
at the same angles. Figures 5.1 and 5.2 explicitly display this phenomenom. The
finite thickness of the coating and the reflection coefficient of the coating might be
contributing factors to this effect. For these specific angles, the RCS measurements
are being made at the edges of the plates. Since the edges of the coated plates are not
covered with radar absorbing material, the exposed edges of the coated plates reflect
radar energy in the same manner as the edges of the uncoated plates. However, there
is the additional reflection of radar energy from the coating/free space interface due
to the impedance mismatch at this boundary. This may account for the increase in
RCS at these angles for the coated plates compared to the RCS at these angles for the
uncoated plates.

At the angles near £90° for the oy, plots in all the figures for the coated plates,
the null in the RCS plot is shifted several degrees from the null in the RCS plot for
the the corresponding uncoated plates at the same angles. The finite thickness of the
coating and the reflection coefficient of the coating might also be contributing factors
to this effect. For these specific angles, the RCS measurements are being made at the
edges of the plates. Since the coating has a finite thickness at the edges, the edges of the
coated plates reflect more radar energy than the edges of the uncoated plates. Further,
the reflection coefficient of the coating varies with the angle. This may account for the
shift in the null of the RCS plot at these angles for the coated plates compared to the
null in the RCS plot at these angles for the uncoated plates.

5.3 Theoretical Radar Cross Section Data

The theoretical RCS data were generated by the EFIE series of FORTRAN
computer programs. The EFIE series of computer programs are discussed in Chapter

3. Table 5.2 provides a list of the RCS data computed by this series of programs, and
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Appendix E contains copies of each of the RCS plots generated from this computed
data. The RCS data were all computed for square perfectly conducting plates. The size
of the perfectly conducting plates was 10cm by 10cm for all the computations, and the
frequency was always 3.0 GHz. The perfectly conducting plates were coated on only
one side with a coating which had the complex relative permittivity (er) and complex
relative permeability (ug) of interest. The RCS was computed 360 degrees around
each plate at 109 equally spaced points. Since the method of moments is a relatively
low frequency technique (dimensions of the object relatively small with respect to the
wavelength of interest), a compromise was made between the size of the plate used,
the frequency of the RCS calculations, the magnetic disk storage requirements for the
Z-matrix, and the computation time required for the VAX 11/750 to calculate the RCS

data. Table 5.2 represents the results of the compromise.

Figures E.17 through E.28 in Appendix E are the theoretical RCS plots gen-
erated by the EFIE series of FORTRAN computer programs. These RCS plots are
summarized in Table 5.2. Two orthogonal polarizations are displayed in the same fig-
ure. The onn polarization is on the top of each figure, and the oy, polarization is on
the bottom of each figure. These polarizations are explained in the next paragraph.
Table 5.2 also lists the computed value of the RCS at normal incidence to the coated

side of the plate (8 = 0°) for the op, polarization.

All the theoretical RCS plots in Appendix E display the RCS in decibels ref-
erenced to one square meter (dBsm) on the Y-axis versus angle on the X-axis. The
frequency of the RCS calculation is also annotated along the Y-axis of each RCS plot.
The opp versus angle RCS plots in Appendix E correspond to a horizontally polarized
electric field for the incident wave and a horizontally polarized electric field for the scat-
tered wave with respect to the edge of the plate. Similarly, the oy, versus angle RCS
plots in Appendix E correspond to a vertically polarized electric field for the incident
wave and a vertically polarized electric field for the scattered wave with respect to the

edge of the plate. The angle measurement on the X-axis is in degrees.

The angle displayed on the X-axis in the RCS plots of Appendix E is theta

(0) in the spherical coordinate system. If the plane of the plate is considered the X-Y
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plane, then the normal to this plane is the Z-axis. Theta (6) in the spherical coordinate
system is measured with respect to the Z-axis. Assuming the edges of the plate are
parallel to the X-axis and Y-axis, the cut obtained is for ¢ = 0° as 8 varies. The plate
is coated on only one side, and the angle § = 0° on the RCS plot corresponds to normal
incidence on the side of the plate with the coating. The angles § = +180° on the RCS

plot correspond to normal incidence on the uncoated side of the plate.

There are several issues involved in the computation of the RCS data using the
EFIE series of computer programs. The first issue is modelling of the partially coated
perfect conductor. The second issue is the continuity of surface current between the
boundary of the exposed perfect conductor and the coated perfect conductor.

The question of how to model the partially coated perfect conductor is the first
issue which arises. Figure 5.3 shows how the partially coated perfect conductor was
modelled in this thesis to compute the RCS data for Figures E.17 through E.28. Figure
5.3 shows the perfect conductor is modelled as an infinitely thin plate composed of 128
triangular patches. This figure also shows the coating is modelled as an infinitely thin
plate composed of 128 triangular patches. The plate forming the surface of the coating

is spaced the distance corresponding to the thickness of the coating away from the plate

forming the perfect conductor.

Notice that the surfaces of the coating along the sides which would meet the
perfect conductor are not present in Figure 5.3. The coatings used for the experimental
measurements are relatively thin, and satisfactory RCS results were obtained from the
EFIE computer programs without including the sides of the coating surface. Also,
it was found the RCS computation was not improved by the addition of the sides
of the coating. Since the coatings were thin, the sides were composed of elongated
triangular patches. With the seven-point numerical quadrature integration scheme
used to compute the elements of the Z-matrix over the bi-triangular subdomains, the
best results are obtained with triangular patches which have sides of relatively the same
length {124]. The triangular patches used to model the sides of the coating surface do
not meet this criteria. Further, the computation time was decreased by not including

the sides of the coating (fewer triangular patches produces a smaller Z-matrix).
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The second issue was the continuity of surface current across the boundary be-
tween the exposed perfect conductor and the coated perfect conductor. The model of
the perfect conductor shown in Figure 5.3 is actually two infinitely thin plates com-
posed of 128 triangular patches. These two plates which form the exposed and coated
portions of the perfect conductor, respectively, are modelled as having a separation
of zero. However, they are still modelled as two distinct plates. For each plate, the
component of current normal to an exposed edge is zero. Therefore, there is no conti-
nuity of current between the boundary of the exposed perfect conductor and the coated
perfect conductor with the modelling scheme used in this thesis. The only justification
for this is that it was much simpler, and it gives satisfactory results. A model of the
perfect conductor was tried where the plate forming the exposed perfect conductor was
separated from the plate forming the coated perfect conductor by a distance corre-
sponding to the thickness of the aluminum plates (32 mils) used in the experimental
measurements. No improvement ip the calculated RCS data was noted. Therefore, this

added complexity was discarded.

As the first step after developing and debugging the EFIE series of FORTRAN
computer programs used to compute the RCS data for Figures E.17 through E.28, it was
necessary to verify that the programs gave reasonable results. As described in Chapter
3, the required inputs to the computer programs were the geometry specifications for
the partially coated perfect conductor and the complex relative permittivity (¢g) and
permeability (ug) of the coating. The relative permittivity (eg = 1) and permeability
(kR = 1) of free space and a coating thickness of 7.62 x 10~* meters were used to verify
the proper performance of the computer programs. With these inputs, the computer
programs would be expected to give RCS data equivalent to that for an uncoated

perfect conductor. This was not achieved until the EFIE2PC program was modified.

The required modification to the EFIE2PC computer program involves the ap-
proximation of the integration of the weighting function over the bi-triangular subdo-
main as its value at the centroid of the triangular patch as shown in equation (A.69)
of Appendix A. When this approximation was made for all the triangular patches, the

EFIE computer programs gave an unsatisfactory match to the experimental measure-

........................................
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ments for the uncoated 10cm by 10cm square aluminum plate (Figure E.1 of Appendix
E). The EFIE2PC computer program was then modified to perform a seven-point nu-
merical quadrature integration over the bi-triangular subdomain instead of making this
approximation whenever the distance from the observation triangle to the source tri-
angle was less than the length of any edge of the observation triangle. The results were
satisfactory when this modification was incorporated into the EFIE2PC computer pro-
gram. The first entry in Table 5.2 and Figure E.17 of Appendix E show the calculated
RCS results with this modification. These results will be discussed further in the next

section.

The computed RCS data for the Eccosurb FDS coated plate are shown in the
second entry of Table 5.2 and in Figure E.18 of Appendix E. A value of eg = 8.9+10.623
was used for the complex relative permittivity of tiie Eccosorb FDS radar absorbing
material, and a value of ugp = 1.7+11.36 was used for the complex relative permeability
of the Eccosorb FDS radar absorbing material. These values for the complex relative
permittivity and permeability are equivalent to the quoted manufacturer specifications
in Table 4.3 for the Eccosorb FDS at a frequency of 3.0 GHz.

The computed RCS data for the Eccosorb SF 6.0 coated plate are shown in the
third through seventh entries of Table 5.2 and in Figures E.19 through E.23 of Appendix
E. Values for the complex permittivity and permeability (or dielectric and magnetic
constants and loss tangents) were not available in the manufacturer’s literature for the
Eccosorb SF 6.0 radar absorbing material. However, a nominal value for the loss at
normal incidence of -5 dB at a frequency of 3.0 GHz was quoted. Therefore, the values
for the complex relative permittivity and permeability shown in Table 5.2 were chosen.

The values of eg = 8.9 + 10.623 and up = 2.9 + 12.32 for the complex relative
permittivity and permeability, respectively, of the Eccosorb SF 6.0 were chosen in the
following manner. The manufacturer’s quoted value of a -5 dB loss at normal incidence
for a frequency of 3.0 GHz was used. It was assumed this was for an infinite sheet of
the radar absorbing material. Ignoring reflection at the free space/coating boundary,

a value for the imaginary part of the propagation constant which would give -5 dB of

loss was computed according to the following formula:
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—5dB = 20log,q e~ *"* (5.1)

where k" is the imaginary part of the propagation constant (k = w,/€), and z is equal
to twice the thickness of the Eccosorb SF 6.0 radar absorbing material (the wave travels
through the coating, is reflected at the perfect conductor, and travels back through the
coating). This value for the imaginary part of the propagation constant easily yields
a value for the product of the complex relative permittivity and permeability. Next,
since both the Eccosorb SF 6.0 and the FDS materials are based on a silicon rubber
compound, it was assumed the same value for the complex relative permittivity of the
SF 6.0 as the manufacturer quoted for the FDS radar absorbing material. Thus, the
value for the complex relative permeability was fixed. This is how the values for the
complex relative permittivity and permeability of the Eccosorb SF 6.0 radar absorbing
material quoted above were arrived at.

The values discussed in the previous paragraph for eg and ugr of the Eccosorb
SF 6.0 coating produced a decrease in the RCS at normal incidence of -5.7 dB, as shown
by the first and third entries in Table 5.2. Unfortunately, this was more loss than was
measured experimentally (see Table 5.1). Various values for eg and ur were then used
to examine the behavior of the EFIE computer programs and to see which values might
produce the best fit to the experimental RCS data. This will be discussed further in
the next section.

The computed RCS data for the Eccosorb FGM 40 coated plate are shown in
the eighth through twelfth entries of Table 5.2 and in Figures E.24 through E.28 of
Appendix E. Values for the complex permittivity and permeability (or dielectric and
magnetic constants and loss tangents) were also not available in the manufacturer’s
literature for the Eccosorb FGM 40 radar absorbing material. The values of ¢ and ug
shown in Table 5.2 for the Eccosorb FGM 40 coating were chosen in the same manner
as outlined in the previous paragraphs for the Eccosorb SF 6.0 coating.

The values of eg and ug shown in the seventh and twelfth entries of Table 5.2
for the Eccosorb SF 6.0 and FGM 40 coatings, respectively, were chosen in a slightly

different manner. The complex relative permittivities and permeabilities listed in these
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entries were calculated assuming the coatings have one-half the thickness and twice the
loss quoted by the manufacturer’s literature for each respective coating. The results

will be discussed further in the next section.

5.4 Comparison of Experimental and Theoretical Results

The comparison of the experimental and theoretical results is done in Figures
5.4 through 5.15 at the end of this chapter. These figures are the composites of the
theoretical RCS predictions listed in Table 5.2 and the corresponding experimental
RCS plots for the same set of conditions. Figures 5.4 through 5.15 display the oxs
versus angle curves for the experimental RCS data (solid line) and the corresponding
theoretical RCS predictions (dashed line) generated by the EFIE series of computer
programs. These figures were produced by overlaying the experimental RCS plots onto
the theoretical RCS predictions.

Verification of the performance of the EFIE series of computer programs is
provided by Figure 5.4. The relative permittivity (¢g) and permeability (ug) of the
coating were set equal to the free space values in the EFIE series of computer programs
to generate the theoretical RCS prediction. As discussed in the previous section, the
computer programs would be expected to give RCS data equivalent to that for an
uncoated perfect conductor for these values of ¢g and ug. Figure 5.4 is a comparison
of the experimental RCS data for an uncoated 10cm by 10cm aluminum plate and
the corresponding theoretical RCS prediction. The theoretical results are very close
to the experimental data. The first entries in Tables 5.1 and 5.2 show the theoretical
RCS at normal incidence to the coated side of the plate is only 0.1 dB below the
experimental measurement. This provides confidence in the performance of the EFIE

series of computer programs.
Figure 5.5 is a comparison of the experimental and theoretical data for an Ec-
cosorb FDS coated plate. The relative permittivity (¢g) and permeability (zg) of the

coating were set equal to the values shown in the second entry in Table 5.2 for the

EFIE series of computer programs to generate the theoretical RCS prediction. Again,
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the theoretical results are very close to the experimental data. The RCS at normal

“_w e e

incidence to the coated side of the plate (ons in Tables 5.1 and 5.2) is -10.3 dBsm for
the theoretical prediction and -10.6 dBsm for the experimental measurement, a 0.3 dB

: difference. Figure 5.5 also shows the match is almost exact down to approximately -25

dBsm.

Figures 5.6 through 5.10 are the comparisons of the experimental and theoretical
data for an Eccosorb SF 6.0 coated plate. Figure 5.8 shows the best fit of the theoretical
. RCS prediction to the expermental measurement down to approximately -20 dBsm.
The relative permittivity (eg) and permeability (ugr) of the coating were set equal to
the values shown in the third through seventh entries in Table 5.2 for the EFIE series
of computer programs to generate the theoretical RCS predictions. As discussed in
the previous section, all the values for ez and ur shown in Table 5.2 for the Eccosorb
SF 6.0 radar absorbing material were chosen, and they are not the manufacturer’s
specifications. The different values of ¢z and g were chosen to investigate the behavior
of the EFIE computer programs, and to see which value gave the closest fit to the
experimental data.

The RCS at normal incidence to the coated side of the plate (onn in Tables
5.1 and 5.2) is -12.5 dBsm for the experimental measurement (third entry in Table
5.1). The theoretical predictions for the RCS at normal incidence to the coated side
of the plate are -15.5, -12.1, -12.4, -12.0, and -11.2 dBsm, respectively, for the third
through seventh entries in Table 5.2. The first theoretical prediction is -3.0 dB too low.
I As discussed in the previous section, the values for €g and upr used to generate this
3 prediction were based on the manufacturer’s quoted RCS reduction of a nominal -5

dB at normal incidence. The computed reduction is actually -5.7 dB (the third entry
minus the first entry in Table 5.2). The next three RCS predictions in Table 5.2 for the

SF 6.0 are relatively close: a difference of +0.4 dB, +0.1 dB, and +0.5 dB, respectively,
E from the experimental measurement. The last RCS prediction for the SF 6.0 assumed
v a coating with twice the thickness and one-half the loss to compute the values of eg
. and upr. This prediction was +1.3 dB too high.

A Figures 5.11 through 5.15 are the comparisons of the experimental and theo-
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retical data for an Eccosorb FGM 40 coated plate. Figures 5.13 and 5.14 both show
a close fit of the theoretical RCS prediction to the expermental measurement down
to approximately -20 dBsm. The relative permittivity (egr) and permeability (ur) of
the coating were set equal to the values shown in the eighth through twelfth entries in
Table 5.2 for the EFIE series of computer programs to generate the theoretical RCS
predictions. As discussed in the previous section, all the values for eg and ug shown in
Table 5.2 for the Eccosorb FGM 40 radar absorbing material were chosen, and they are
not the manufacturer’s specifications. The different values of ¢z and up were chosen
to investigate the behavior of the EFIE computer programs, and to see which value
gave the closest fit to the experimental data.

The RCS at normal incidence to the coated side of the plate (045 in Tables
5.1 and 5.2) is -13.3 dBsm for the experimental measurement (fourth entry in Table
5.1). The theoretical predictions for the RCS at normal incidence to the coated side
of the plate are -12.5, -15.3, -13.0, -13.5, and -12.2 dBsm, respectively, for the eighth
through twelfth entries in Table 5.2. The first four RCS predictions in Table 5.2 for the
FGM 40 are a difference of +0.8 dB, -2.0 dB, +0.3dB, and -0.2 dB, respectively, from
the experimental measurement. The last RCS prediction for the FGM 40 assumed a
coating with twice the thickness and one-half the loss to compute the values of eg and
ur. This prediction was +1.1 dB too high.

The difference of the theoretical RCS predictions from the experimental RCS
measurements is a function of the approximations made in the theoretical model. One
approximation to consider is the modelling of the coating. As discussed in the previous
section, the surfaces of the coating along the sides which would meet the perfect con-
ductor were not used. This could account for the differences between the theoretical
RCS predictions and the experimental RCS measurements near +90° in Figures 5.4

through 5.15. At these angles the contribution of the sides of the coating to the overall

RCS could be more important. This issue and others are discussed further in Chapter
7.
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1)

! Coatings listed are Eccosorb radar absorbing material

: Targets are square aluminum plates coated on one side

d [ = radar frequency in gigahertz (GHz)

A RCS measurements made at 360 points from —180° to 180°

RCS is in decibels referenced to one square meter (dBsm)

\ onh = RCS at normal incidence (0°) to coated side of plate
3 for HH polarization
)
A Plate Size Coating Case f Ohh Figure
10cm X 10cm None 13 3.0 -9.7 E.1
4 10cm x 10cm FDS 16 3.0 -10.6 E.2
‘ 10cm x 10cm SF 6.0 15 3.0 -12.5 E.3
10cm x 10cm FGM 40 14 3.0 -13.3 E.4
: 10cm x 10cm None 13B 6.0 -3.4 E.5
10cm x 10cm FDS 16B 6.0 -4.5 E.6
10cm X 10cm SF 6.0 15B 6.0 -20.0 E.7
10cm X 10cm FGM 40 14B 6.0 -15.2 E.8
2 15cm x 15cm None 9 3.0 -1.1 E.9
¢ 15¢cm x 15cm FDS 12 3.0 -2.1 E.10
& 15cm X 15cm SF 6.0 11 3.0 -4.4 E.11
15cm x 15c¢cm FGM 40 10 3.0 -7.0 E.12
: 15cm X 15cm None 9B 6.0 4.5 E.13
] 15¢cm x 15cm FDS 12B 6.0 3.3 E.14
15cm X 15cm SF 6.0 11B 6.0 -13.3 E.15
15¢cm x 15cm FGM 40 10B 6.0 -9.4 E.16

Table 5.1. Experimental Radar Cross Section Plots

[ v ¥ B N R
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Coating parameters used correspond to Eccosorb specfications

er = complex relative permittivity of coating

ur = complex relative permeability of coating

Targets are square plate perfect conductors coated on one side

Radar frequency is 3.0 gigahertz (GHz) for all entries

RCS computations made at 109 points from —180° to 180°

orr = RCS at normal incidence (0°) to coated side of plate
for HH polarization

* permittivity and permeability for these two cases computed

assuming coatings have one-half the thickness and twice the loss

Plate Size

Coating

€R

UR

Figure

10cm x 10cm

None

(1.0,0.0)

(1.0,0.0)

E.17

10cm x 10cm

FDS

(8.9.0.623)

(1.7,1.36)

E.18

10cm X 10cm

SF 6.0

(8.9,0.623)

(2.9,2.32)

E.19

10cm

SF 6.0

(5.0,0.623)

(1.3,0.93)

E.20

10cm

SF 6.0

(5.0,0.0)

(1.18,1.09)

E.21

10cm

SF 6.0

(8.9,0.623)

(1.85,0.83)

E.22

10cm

SF 6.0

(8.9,0.623)

(0.46,0.21)*

E.23

10cm

FGM 40

(11.0,0.1)

(4.2,3.8)

E.24

10cm

FGM 40

(5.0,0.0)

(9.2,8.5)

E.25

10cm

FGM 40

(8.9,0.623)

(5.5,4.4)

E.26

10cm

FGM 40

(8.0,0.0)

(5.8,5.4)

E.27

10cm

FGM 40

(8.9,0.623)

(1.37,1.1)*

E.28

Table 5.2. Theoretical Radar Cross Section Predictions
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Figure 5.2. Experimental 3.0 GHz RCS for uncoated (solid line) and Eccosorb FDS coated

(dashed line) 15cm by 15cm aluminum plate: ojp versus angle




59

Chapter 5. Experimental and Theoretical Results

A % N

IE
ig
g9
:

V‘»‘» AN
AAVAVAN' S V4
VAVAVA
IAVAVAN 0 V% </

»1»1’40

~~~~~~~

Figure 5.3. Triangular patch model of partially coated perfectly conducting square plate

-----------



R Chapter 5. Experimental and Theoretical Results 60
N
' T l T T C?J
: Q
: - 19
) N
: i 18
4 "
Y —
I
4. Q
: - &
: %)
' L
Q L
2 5 ] e
b &)
: L)
; O
s @ —
- 4 "
; <<
3 —
i L
‘ N T
- 4 Q —
|
Q
- 4
I
: S
. | | 1 1 N
h: QY
Q Q NN NN Q Q
— A ™ < g
| | | | 1

- -
"

e

€1 3ISVO (ZHO £--WS8d) HH-VWOIS

Figure 5.4. Experimental (solid line) and theoretical (dashed line) 3.0 GHz RCS for uncoated

s s D

10cm by 10cm aluminum plate: oy versus angle




: Chapter 5. Experimental and Theoretical Results 61
v Q
) T T T I %
Q
- 1 )
p Q
- 1 Q —_
- 8
[}
—t
T
s Q
: - 1o &
« !
¥ : (/)
' Lo
4 Q Lol
; " e
: O
N Ll
, Q
N ® —
~ -1
3] ! <
. —
3 Lo
) N I
L 4 —
3 I
Q
N - 4
- -l
1
SN
- | l | 1 N
X Q\V
Q Q NS Q Q NI
¢ — QV/ ™M < u
:. | | | | |
3
; 91 3ASVO (ZHO &£--WSdd) HH-VWOIS
: Figure 5.5. Experimental (solid line) and theoretical (dashed line) 3.0 GHz RCS for Eccosorb
FDS coated 10cm by 10cm aluminum plate: o5 versus angle
l
i
1..:'- ~ N '.'\. ‘-“'r. r e "'. q.'. '.‘;. g.".':..:--.\!: oy \;.‘-; N ) '\;.‘. :“ F“-" A\ ';- ‘:-:';-';,.‘4‘ " "n.'- ~“-.'.-.'i- . ' -'..(.'f‘. -"l..f‘.;-;'..w

Al



Chapter 5. Experimental and Theoretical Results 62

N
| | T T C?J

l
150

l
100

| 1
-100 -39
THETA (DEGREES--PHI-=-0)

- 5SS,

L
- 190

. ! I I 1
NN Q
|

- 200

N N NN NN
Al ™ < Ip)

- Gl 3ASVO (ZHO &--WSHd) HH-VWOIS

Figure 5.6. Experimental (solid line) and theoretical (dashed line) 3.0 GHz RCS for Eccosorb

SF 6.0 coated 10cm by 10cm aluminum plate: opp versus angle (1 of 5) {




of it Vb =

{ Chapter 5. Experimental and Theoretical Results 63
3 S
b T l | | %
o
D S
, — - "
" IS
_‘ = ?
¥
—
i L
v 1
: ) H o
y |
4 P
S
- T e
. O
. Ll
) 0
@ —
~ 4
' <
l._
L]
. Q T
' - 4 8 —
: 3
I 1
; Q
! 1 | | NN
X A
i Q Q Q Q NN Q
‘ — Al ™M < i@
: | [} § [ |
b Gl 3SVO (ZHO €--WSdd) HH-VWOIS

Figure 5.7. Experimental (solid line) and theoretical (dashed line) 3.0 GHz RCS for Eccosorb

Py

SF 6.0 coated 10cm by 10cm aluminum plate: onrp versus angle (2 of 5)




.....................

»t

Chapter 5. Experimental and Theoretical Results 64

Q
: l T l l %

1
150

L
IN%1%

PR

|
-20
THETA (DEGREES--PHI-0)

- 100

- 130

i

J 1 ]

NN
<+

- 200

1
- NN NN NN N Q
— Qv ™ Ip)

Gl 3SVO (ZHY €--WSdd) HH-VWOIS

N Figure 5.8. Experimental (solid line) and theoretical (dashed line) 3.0 GHz RCS for Eccosorb

SF 6.0 coated 10cm by 10cm aluminum plate: opp versus angie (3 of 5)




Chapter 5. Experimental and Theoretical Results

Q
N
Qv

THETA (DEGREES--PHI-0)

| i
S S S
— ™ <+

[ ! I

N
Ip)

N
Ql
|

Gl 3JSVO (ZHY &€--WSE9d) HH-VWOIS

Figure 5.9. Experimental (solid line) and theoretical (dashed line) 2.0 GHz RCS for Eccosorb

SF 6.0 coated 10cm by 10cm aluminum plate: opp versus angle (4 of 5)
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Chapter 6

GENERALIZATION TO MULTI-LAYERED COATING

6.1 Introduction

This chapter presents the extension of the procedure discussed in Chapter 3 to
a multi-layered coating. Chapter 3 discussed the approach used for a single layer of
coating on a perfectly conducting surface. The cases of a completely coated perfect
conductor and a partially coated perfect conductor were derived in Chapter 3. This
chapter also discusses the cases of a completely coated perfect conductor (section 6.2)

and a partially coated perfect conductor (section 6.3) with multi-layered coatings.

6.2 Completely Coated Perfect Conductor

Using Huygens’ principle, the equivalence principle, and satisfying the bound-
ary conditions for a completely coated perfect conductor generates a set of integro-
differential equations (see Appendix A). Applying the method of moments to this set
of integro-differential equations produces a matrix equation. As derived in Appendix A
for one layer of coating completely enclosing a perfect conductor (refer to Figure 3.1),

the matrix equation is of the form:

Em Zu sz Zla J1
How | =1 Zn Z22 Zas M, . (6.1)
O 731 —Z-az 733 Jo

The left half of the equation represents the excitation vector, and the right half of
the equation represents the interaction matrix, Z-matrix, times the unknown electric
and magnetic surface current coefficients. This matrix equation corresponds to three

simultaneous equations in three unknowns. Now, the third equation can be used to
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back-substitute and reduce the size of the Z-matrix:

—_ =1 = —_ = —

Jo=—2Z34 W31'11+Z32°M1]. (6.2)

Back-substituting leaves two simultaneous equations which can be written as the fol-

lowing matrix equation:

E Zy Zu\ (7
Em Y\ _[4n 42\ (4 .
(72.) (7’ 7 )(Ml) (62
21 22
where
= = = =1 =
11 =211~ 213233 - 231 (6.4)
=/ = = =1 =
Zyo=212~213 233 *Z32 (6.5)
=/ = = =1 =
Z21 = Z21 - 223 Zaa . Z31 (6.6)
=/ = - =1 =
Z22 = 4a2 — 223 33 ° Z33. (6.7)

Assume N basis functions are obtained over each boundary surface using the
method of moments. Equation 6.1 requires the inversion of a 3N by 3N Z-matrix to
compute the unknown surface current coefficients. Back-substitution requires the inver-
sion of an N by N matrix, 7;31, some matrix multiplications and additions, equations
6.4 through 6.7, and the inversion of a 2N by 2N Z-matrix, equation 6.3. However, all
the target structure beneath the coating has been replaced by an equivalent interac-
tion matrix as shown in equation 6.3. This has significance for the extension of the
procedure discussed in Chapter 3 to multi-layered coatings.

For two layers of coating on a perfect conductor (refer to Figure 6.1), the matrix

equation is of the form:

Em Zu Zi2 Zis Zya O J2
T_f_m' Za1 Zaz Zaz Zaa O M,
_(_)M" = Zal z:az 233 Z:u Zas J1 (6.8)
O Z4 Zaz 243 Zasa Zas M,
Omtin) 0 O Zs3s Zoa Zss Jo

R T OO N )
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This matrix equation represents five simultaneous equations in five unknowns. Back-
substituting the fifth equation in 6.8 in the manner used for 6.1 yields a matrix equation

of the form:

Em Zn le Zxa Zu J2
Hw | _ | Za1n Z2z Zas Z24 M (6.9)
Ome Z31 Z3; Zss 234 J1
Ormrr Z4 Zay Zaz Za4 M,

which represents four simultaneous equations in four unknowns. Obviously, the ele-
ments of the Z-matrix in equation 6.9 are not the same as the elements of the Z-matrix
in equation 6.8 due to the back-substitution. Further, the explicit equation represent-
ing the interaction of the perfect conductor surface with the first layer of coating has
now been absorbed into the equivalent Z-matrix shown in 6.9. Now, the third and

fourth equations in 6.9 can be written as

733 T+ 734 ‘M, =- ﬁal T2+ ?32 . —Mz] (6.10)
and
Zia-T1+ 244 My = =[Z41- T2+ Za2- M3, (6.11)
which becomes
(Zs 2Y(Z)- (B BY(Z). o
Z43 Zua M, —Z41 —Z42 M,

Therefore,

—_— = = -1 = = —_—
(;’} ) = (ﬁ” ﬁ“) (ﬁsl ﬁ”) (LI? ) (6.13)
Ml Z43 Z44 Z41 Z42 M2

Back-substituting equation 6.13 into 6.9 produces a matrix equation of the form:

E Z Zo\ (T
= m —_ 11 12 (_2 ) (6 14)
= = )
(H""> (Z2l Zzz) M,

Again, assume N basis functions are obtained over each boundary surface using

the method of moments. Equation 6.8 requires the inversion of a 5N by 5N Z-matrix
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to compute the unknown surface current coefficients. Back-substitution requires the
inversion of an N by N matrix, some matrix multiplications and additions, the inversion
of a 2N by 2N Z-matrix, equation 6.13, followed by some matrix multiplications and
additions, and, finally, the inversion of another 2N by 2N Z-matrix, equation 6.14.
All the target structure beneath the second layer of coating has been replaced by an
equivalent interaction matrix as shown in equation 6.14. This additional layer of coating
only requires the inversion of an additional 2N by 2N Z-matrix over the one layer case.

For three layers of coating on a perfect conductor (refer to Figure 6.2), the

matrix equation is of the form:

( Em \ (Zu le le Zu o o O ‘\ (ﬁ, \
H Zn Z22 Za3s Zia O O 0 M,
:_dm" Z31 23z Zss Zsa Zss Zse O Ja
Omw | =| Zs1 Zaz Zas Zas Z4s Zas O M, (6.15)
Opnie) 0 O Zss Zba Zss Zse Zst R
\O"“" ) 0 0 Zes Zea Zos Zes Zer \A_h}
Omes \ 0 0 0 0 Z75 Zre Z77} Jo

By the same logic used for the 2 layer case, back-substitution reduces the size of the

Z-matrix for three layers of coating enclosing a perfect conductor:

E 7. Z.\(T
(#)-(3 %)) (010
m Zyn Za 3
since
_ 1 ey = -
TN o (T T\ (T T ) (s 6.7
M, Z.. Z Z.. Z.,) \Ms)’ '
43 Jay 4 L2

Again, assume N basis functions are obtained over each boundary surface using
the method of moments. Equation 6.15 requires the inversion of a 7N by 7N Z-matrix
to compute the unknown surface current coefficients. Back-substitution requires the
inversion of one N by N and three 2N by 2N matrices, along with some intermediate
matrix multiplications and additions. All the target structure beneath the third layer

of coating has been replaced by an equivalent interaction matrix as shown in equation

..............
..............
.............................
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6.16. This additional layer of coating only requires the inversion of an additional 2N
by 2N Z-matrix over the two layer case.

A recursive relationship emerges for multi-layered coatings enclosing a perfect
conductor. Instead of the problem involving the inversion of ever larger Z-matrices
for each added layer of coating, it becomes one of the intermediate inversion of a 2N
by 2N matrix for each added layer of coating. Thus, after each intermediate 2N by
2N inversion and back-substitution, the effects of the inner layer are included, and the
inner layer’s unknown surface current coefficients are discarded. So, for the three layer
example, instead of inverting a 7N by 7N Z-matrix (inversion time increases as N3),
the problem involves the inversion of one N by N and three 2N by 2N matrices. The
problem only increases linearly in computation time for each added layer: another 2N
by 2N matrix inversion for each added layer of coating.

For n layers of coating on a perfect conductor (refer to Figure 6.3), the matrix

equation is of the form:

E"‘ \ ( Zu le Zm Zu 0 \ _7_n

Ho Zan Z22 Zas Zan 0 Mn

Omre Z31 Z3z Z3zz Zaa 0 In-1

= =\| = = = = AT 6.18
Ormte 41 242 Z4z Zua Y My (6.18)
ﬁm("‘) } \ 0 0] 0 0 . ?(2,14.1)(2”.{.1) ) 70

The extension to n layers of coating enclosing the perfect conductor is straightforward,
given the approach outlined above. Starting with the innermost layer, the Z-matrix
elements would be computed as for the single layer case presented in Appendix A. How-
ever, instead of the surrounding medium being free-space, it now has the permittivity
and permeability of the next layer of coating. Matrix inversion and back-substitution
proceeds progressively for each layer of coating added, with the permittivity and per-
meability of the surrounding medium always being that of the next layer to be added.
This process is repeated until the outermost layer of coating is reached. The equiva-

lent electric and magnetic surface current coefficients of the outermost layer are then

computed, and the scattered field is calculated as discussed previously.
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6.3 Partially Coated Perfect Conductor

The generalization to a multi-layered coating for a partially coated perfect con-
ductor follows the same line of reasoning as presented in section 6.2 for the completely
coated perfect conductor. Using Huygens’ principle, the equivalence principle, and sat-
isfying the boundary conditions for a partially coated perfect conductor generates a set
of integro-differential equations (see Appendix A). Applying the method of moments

to this set of integro-differential equations produces a matrix equation. As derived in

Appendix A for one layer of coating partially enclosing a perfect conductor (refer to

Figure 3.3), the matrix equation is of the form:

-
[
-
[
[

(]
Nl |
-

»

[ 3
'

(6.19)

NN

NN
8

Al
(2]

__0
244

W
[
[
W

Omm

N
2
N
-
)
o

The left half of the equation represents the excitation vector, and the right half of
the equation represents the interaction matrix, Z-matrix, times the unknown electric
and magnetic surface current coefficients. This matrix equation corresponds to four
simultaneous equations in four unknowns. Now, the fourth equation in 6.19 can be

used to back-substitute and reduce the size of the Z-matrix:

=1

Ja=~2Z,4, [?41 T1+ Zaz- M,]. (6.20)

Back-substituting leaves three simultaneous equations which can be written as the

following matrix equation:
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=/ = = =1 = ) :
le=ZIZ—Z14‘Z44 'Z42 (6.23) :
= =
13= 213 (6.24)
= = = =1 = ;
Z21 =291 —Z24-Zyy Za (6.25) y
1
= = = =1 = 3
Zzz = Z22“Z24'Z44 ‘Z42. (6.26)
=/ = ;
Z,3 = Z33 (6.27) d
=/ = '
23 =23 (6.28)
=/ = '
Zgo = 232 (6.29) 4
= = :
Assume N basis functions are obtained over each boundary surface using the
method of moments. Equation 6.19 requires the inversion of a 4N by 4N Z-matrix to
compute the unknown surface current cocfficients for a partially coated perfect conduc-
—_1 -

tor. Back-substitution requires the inversion of an N by N matrix, Z,, , some matrix
multiplications and additions, equations 6.22 through 6.30, and the inversion of a 3N
by 3N Z-matrix, equation 6.21. However, all the target structure beneath the coating
has been replaced by an equivalent interaction matrix as shown in equation 6.21. This

has significance for the extension of the procedure discussed in Chapter 3 and section

6.2 to multi-layered coatings over a partially coated perfect conductor. "
For two layers of coating on a partially coated perfect conductor (refer to Figure E
6.4), the matrix equation is of the form:

En (Zu le le Zu le 0\ /7, ;
Hp Zn Za Zaz Za Zs O M, '

Omv | _ | Z31 Zaz Z3s Z3a 0 Z3ze J1
Omen Z41 Zaz Z43 Zaa 0 Z4e M, .

E ey Zsy Zss O O Zssg O I3

Omce k 0 0 Zes Zesa O Zeg } Ja

This matrix equation represents six simultaneous equations in six unknowns. Back- u

substituting the sixth equation in 6.31 in the manner used for 6.19 yields a matrix

equation of the form:
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En Zu Ziw2 Zis Zisa Zis J2
T | (2o Zo Zos Zos Za | | 30
Omt | =|2Z31 Z32 Z3s Zza O J1 (6.32)
Omen Z4 242 243 Zes O M,
B oy Zsy Zs2 O 0 Zss T3

which represents five simultaneous equations in five unknowns. Obviously, the elements
of the Z-matrix in equation 6.32 are not the same as the elements of the Z-matrix in
equation 6.31 due to the back-substitution. Further, the explicit equation representing
the interaction of the coated perfect conductor surface with the first layer of coating
has now been absorbed into the equivalent Z-matrix shown in 6.32. Now, the third and

fourth equations in 6.32 can be written as

Z33-J1+ 234 My = -[=Z=31 T2+ 232 M,) (6.33)

and

Zaz J1+ 244 My =~[Z41- T2+ Z42- M2, (6.34)
which becomes

33

(6.35)
43

N
|| N
N} |
£ (]
- »
N—’
N
|~
SN——’
1
N
[
ﬁuswn
||
NN
'S (]
[ [ %]
N—’
N
| &
» N
S’

Therefore,

— = = -1 = = —_—
(Z2)--(Z 2)"' (% T)(Z). o
Ml Z43 Z44 Z41 Z42 M2

Back-substituting equation 6.36 into 6.32 produces a matrix equation of the form:

— = =/ =/ _

En Zy 2y, Z,3 J2

B \=17. 7. 7 M 6.37
Zm Zyy Z3y Zy =2 (6.37)
Em" — ==t —

J3
Z31 Zaz Zgs
Again, assume N basis functions are obtained over each boundary surface using
the method of moments. Equation 6.31 requires the inversion of a 6N by 6N Z-matrix

to compute the unknown surface current coefficients. Back-substitution requires the
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inversion of an N by N matrix, some matrix multiplications and additions, the inversion
of a 2N by 2N Z-matrix, equation 6.36, followed by some matrix multiplications and
additions, and, finally, the inversion of another 3N by 3N Z-matrix, equation 5.37.

All the target structure beneath the second layer of coating has been replaced by an

o "

equivalent interaction matrix as shown in equation 6.37. This additional layer of coating
d only requires the inversion of an additional 2N by 2N Z-matrix over the one layer case.
For three layers of coating on a perfect conductor (refer to Figure 6.5), the

matrix equation is of the form:
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By the same logic used for the 2 layer case, back-substitution reduces the size of the

Z-matrix for three layers of coating partially enclosing a perfect conductor:

_ = —/ = _
Em I T Zis) (s
How | =27y Zy, Zp Ms (6.39)

Em” = =N =N J4
Z3l Z32 Z33

il »
Byt e e

since

200 P ) d

.,

7 T Zu\ (Zh Zu\(7
(-M—Z)=—(=,33 =?4) (; ;)(ﬁ") (6.40)
2 Z43 Z44 Z41 Z42 3

Again, assume N basis functions are obtained over each boundary surface using

the method of moments. Equation 6.38 requires the inversion of an 8N by 8N Z-matrix

ry”

to compute the unknown surface current coefficients. Back-substitution requires the
inversion of one N by N matrix, two 2N by 2N matrices, and one 3N by 3N matrix along

with some intermediate matrix multiplications and additions. All the target structure

A A A AN Ny
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beneath the third layer of coating has been replaced by an equivalent interaction matrix
as shown in equation 6.39. This additional layer of coating only requires the inversion

of an additional 2N by 2N Z-matrix over the two layer case.

IS a7 o

A recursive relationship emerges for multi-layered coatings partially enclosing
: a perfect conductor. Instead of the problem involving the inversion of ever larger Z-
matrices for each added layer of coating, it becomes one of the intermediate inversion
of a 2N by 2N matrix for each added layer of coating. Thus, after each intermediate 2N
M by 2N inversion and back-substitution, the effects of the inner layer are included, and

the inner layer’s unknown surface current coefficients are discarded. So, for the three

ava o

layer example, instead of inverting an 8N by 8N Z-matrix (inversion time increases as

N3), the problem involves the inversion of one N by N matrix, two 2N by 2N matrices,

and one 3N by 3N matrix. The problem only increases linearly in computation time for
each added layer: another 2N by 2N matrix inversion for each added layer of coating.

The extension to n layers of coating partially enclosing the perfect conductor is straight-

AN

forward, given the approach outlined above. Starting with the innermost layer, the
Z-matrix elements would be computed as for the single layer case presented in Ap-
pendix A. However, instead of the surrounding medium being free-space, it now has
the permittivity and permeability of the next layer of coating. Matrix inversion and
back-substitution proceeds progressively for each layer of coating added, with the per-

mittivity and permeability of the surrounding medium always being that of the next

W

layer to be added. This process is repeated until the outermost layer of coating is

reached. The equivalent electric and magnetic surface current coefficients of the out-

¥

ermost layer and the exposed perfect conductor are then computed, and the scattered

]
a s

field is calculated as discussed previously.

With the information in this chapter, Chapter 3, and Appendix A, the approach

to use for various combinations of coatings and layers of coatings at different locations

on the perfect conductor should be obvious. Equivalent interacticn matrices which

incorporate the cumulative effects of the innermost layers of coatings and perfect con-
ductors would be computed as described above. Then the outermost equivalent electric

1}
$- and magnetic surface current coefficients would be calculated by multiplying the ex-

P T P T S S R s et avat

e \‘1 \"\"._1‘\! -"{

¥ T T LY s\ e T . Tae '."..'_..' LR R RO PP PO AT




Chapter 6. Generalization to Multi-Layered Coating 82 2

citation vector by the equivalent interaction matrix. Finally, the far-field radiation
pattern would be computed from the equivalent electric and magnetic surface currents
for the outermost surfaces. Thus, using Huygens’ principle, the equivalence principle,

the appropriate boundary conditions, and the method of moments, the radar cross

section for coated perfect conductors with arbitrary geometries can be predicted.
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iigure 6.1. Two Layers of Coating Completely Enclosing a Perfect Conductor
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Figure 6.2. Three Layers of Coating Completely Enclosing a Perfect Conductor
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Figure 6.3. N Layers of Coating Completely Enclosing a Perfect Conductor
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Figure 6.4. Two Layers of Coating Partially Enclosing a Perfect Conductor

Figure 6.5. Three Layers of Coating Partially Enclosing a Perfect Conductor
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Chapter 7

CONCLUSIONS AND SUGGESTED FUTURE EFFORTS

7.1 Conclusions

1. In this thesis, Huygens’ principle, the equivalence principle, the appropriate bound-

ary conditions, and the method of moments were used to predict the radar cross
section (RCS) for coated perfect conductors with arbitrary geometries. Experimen-
tal RCS measurements were performed on square aluminum plates coated on one
side with radar absorbing material (Chapter 4). Theoretical RCS predictions were
generated using the electric field integral equation (EFIE) series of computer pro-
grams (Chapter 3). The EFIE series of computer programs gave a very good match
between the experimental RCS measurements and the theoretical RCS predictions
for a partially coated plate (Chapter 5), considering the approximations made in the
theoretical model. Further, once the equivalent electric and magnetic surface cur-
rents have been computed for the coated target, near-field and far-field phenomena

can be computed and studied.

. The matrix equations for multi-layered coatings on a perfect conductor were derived

(Chapter 6), and the procedure was discussed to extend the derivations presented

in this thesis to multi-layered coatings or various coatings over the same perfectly

conducting surface.

. Some of the approximations and limitations of this approach and method of solution

to compute the radar cross section prediction for coated perfect conductors with

arbitrary geometries are the following:

a. An approximation is made of the integration of the weighting function over the
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bi-triangular subdomain as its value at the centroid of the triangular patch as is
shown in equation (A.69) of Appendix A. This approximation reduces two numer-
ical integrations over every bi-triangular subdomain to just one. This approxima-
tion is made when the distance from the observation triangle to the source triangle
is more than the length of any edge of the observation triangle. If this criterion
is not satisfied, a seven-point numerical quadrature integration is performed over

the bi-triangular subdomain.

b. Geometry modelling issues:

1. The sides of the coating which meet the perfect conductor were ignored
in the model of the coating surface. Since the coatings were thin, this approximation
gave satisfactory results. However, it might not be possible to ignore the sides of the
coating if thicker coatings are used.

2. The effects of various triangular patch shapes must be considered when
modelling the geometry of the coated perfect conductor [124].

3. The sides of the coating structure were ignored since the triangular
patches became too elongated.

4. For the partially coated perfect conductor, there is a discontinuity of
electric surface current at the junction between the exposed and the coated perfect
conductor surfaces since both are modelled as separate and distinct surfaces.

5. There is a compromise between the size of the target used, the frequency
of the RCS calculations, the core memory and magnetic disk storage requirements for
the Z-matrix, and the computation time required to calculate the RCS data. These
factors must be considered when determining how many triangular patches to use to

model the geometry of a coated perfect conductor.

7.2 Suggested Future Efforts

1. Investigate various modellings for the coatings and the perfect conductors. One

example would be to incorporate the sides of the coatings which meet the perfect
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conductor into the geometry model while keeping the edges of the triangular patches
approximately equal. Another example would be to model the square plate as a box.
This would then include the effects of the finite thickness of the plate and satisfy
the condition of continuity of electric surface current at the boundary between the

exposed and coated portion of the perfect conductor.

. Incorporate continuity of electric surface current at the boundary between the ex-
posed and coated portion of the perfect conductor while still modelling the geometry

of each as separate and distinct surfaces.

. Investigate the results for other numerical quadrature integrations over the bi-

triangular subdomains (see Chapter 3).

. Write the computer programs and generate theoretical RCS predictions for multi-
layered coatings over a perfect conductor. Compare to experimental RCS measure-

ments for multi-layered coatings over a metal plate.

. Incorporate into the EFIE computer programs the ability to add wire antennas to the
coated perfect conductor. Compute theoretical RCS predictions with wire antennas
added, and compute radiation patterns for the wire antennas near an uncoated and

a coated perfect conductor. Compare the results.

. Incorporate into the EFIE computer programs the ability to compute the RCS for

coatings with rough surfaces.

. Incorporate into the EFIE computer programs the ability to compute the RCS for

anisotropic coatings.
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APPENDIX A

e e e e

DERIVATION OF GOVERNING EQUATIONS

A.l Introduction

A

This appendix contains a derivation of the governing equations for the method
of moments applied to the radar cross section prediction for coated perfect conductors
- with arbitrary geometries. The equations for the interaction matrices are derived using
the equivalence principle, Huygens’ principle, the appropriate boundary conditions, and
the method of moments. The derivation of the equations for the interaction matrix of
a completely coated perfect conductor is presented first, followed by the derivation of

the equations for the interaction matrix of a partially coated perfect conductor.

A.2 Completely Coated Perfect Conductor

This section contains the derivation of the equations for the interaction matrix of
N a completely coated perfect conductor. e~**! is suppressed in the following derivation.
This corresponds to a time harmonic solution at a single frequency. Refer to Figures

3.1 and 3.2 as a reference for the following derivation.

Since the boundary surfaces of the coated target will be replaced by an equivalent

LA NN R AN

set of surface currents using the equivalence principle, the dyadic Green’s function in
an unbounded medium can be used. The dyadic Green’s function in an unbounded

medium [128] is defined as

| GF,7) = T+ = VVg(77) (A1)
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, eiklP=7 |
F F ) = —————. A2
g(r,r) 47|'|F—F’| ( )

In region O, the free space outside the object,

3 1

Go=[T+ k—gVV]go(F,F ) (A.3)
X where

: eikolF—F|

, %= GF=7] (44)
N and

&y

ko = wy/Hots.

? In region 1, the coating on the perfect conductor,

L)

: = = 1 o

- Gi=[I+ k—fvvlm( F) (A.5)
N where

N

-

N ) '

." _ elkl'?-—?

) N= oA (4.6)
and
ki = w\/pe
3 and 4 and € can be complex.

:' At surface S;:

”

4

1 X — —_—

ﬁo X Eo = -—ﬁl X E1 (A.7)

%

o and, therefore, by the equivalence principle

)

- —_— !

v Ml == _—Ml- (A.S)
, Also

\ Y
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ﬁoXT{-():—ﬁlXHl

and, therefore, by the equivalence principle

71 = —71
At surface Si:
ﬁz X Fl =0
and
ﬁz X ﬁl = 72.
Using Huygens’ principle (see equation 3.1) in Region O:
Fy = Fine + Eo = Fine + / 45y {iwpoGo - Ty = V x Go - M1}
5
and
—ﬁo Sﬁinc +_ﬁ, =Finc+/ dSl{iwfoi()-Hl ‘.LV Xgo'jl}.
Sy
Using Huygens’ principle in Region 1:
E, =/ dS1{iwuGy-J, -V x Gy - M, } +/ dSy {iwuGy - T2}
Sl 57
and
ﬁl = dSl{iweﬁl'_M—l+VX51-jl}+/ dSz{VxEI-jz}.
Sl Sz

Applying the boundary conditions at surface S;:

104

(A.9)

(A.10)

(A.11)

(A.12)

(4.13)

(A.14)

(A.15)

(A.16)

(A.17)
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Therefore, at S,

ﬁoXEim; + ﬁo X / dSl{iwuoﬁo °71 -V x ﬁo Hl} =

: s

;.. fig X -/s dS; {z'wuﬁl -7; -V x —5_1 _AT;} + fg X i dSz{iwuﬁl - J2} (A.18)
1 2

: Also at S,

{ J—

» fio x Ho = fio x Hy (4.19)

'a‘ and, therefore, at S,

t Ao X Hine + flo X /S dS) {iweoGo - M1+ V x Go - J1} =

fio X j d$){iweGy - My + V x G1 - Ty} + fio x /S dS:{V x Gy - T2} (4.20)

; 1 2

i Now, at surface S,

fia x B, =0. (A.21)

4 Therefore, at S,

: fig X /S 451 {iwnT1 T, -V x G, - M} + #2 x /S dSy{iwpG, - T2} =0. (A.22)

. 1 2

Also at S,

‘ fia x Hy = Jq (A.23)

; and, therefore, at S,

y

» x| dS1{iweGy - My +V x Gy T} + Az x /s d52{V x Gy - T3} = Ta. (A.24)

Using equations (A.8) and (A.10) equation (A.18) becomes

—ﬁoX/ dsl{iw;toi-o'jx}—floX/ dS;{iwu51-71}+ﬁox/ dSl{VXEO'—M‘l}
S, S, S

O O R T ¥ N L T Ry
A 2 2 A R " M -
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g +fig X dS$1{V x 31 . Hl} + fig X ng{iwyﬁl . 72} = fig X Eine (A.25)
Sy Sa

and equation (A.20) becomes

" i

3
3
—ﬁox/ dSl{VXEo'jl}—-ﬁoX dSl{anl-jl}—ﬁo X/ dSl{iweo—G_o'Hl}
J S S S
.
. —fig X / dSl{:'weﬁl . Hl} + fig X / ng{V X 51 . 72} = fig X Finc (A.26)
L} Sl Sﬁ

and equation (A.22) becomes
\f —fig X / dSl{iwuél 71} + fig X / dSl{V X 61 Hl}
N S Sy
" +fig X / dSz{iwp.-a-—l . 72} =0 (A.27)
: 5

and equation (A.24) becomes
—ﬁz X / dSl{V X 31 71} - ﬁz X / dSl{iwsﬁl Hl}

Sl Sl
1 — _
] +fig X dSz{V X 51 . 72} —J2=0. (A.28)
S

Equations (A.25), (A.26), and (A.27) are of the form

Lyy-Jy+Liz- M,y + Liz- T2 = fio X Egnc (A.29)
: Ly - 71 + Lag - M—l + La3 - 72 = fig X ﬁinc (A.30)
\‘
:' L3a; - 71 + Las - ﬁl + L33 - 72 =0 (A.31)
o
s: or the more compact form

Lnw Lz L\ (T fio X Eine
La1 L3z Laa M, | = | fio X Hinc (A.32)
L3y L3z Las Ja 0

’
k&
¢
hd
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where
Ly = —fio X 5 dS1iw{uoGo + uG1 }- (A.33)
Lyy = fig X /s dSi1{V x Go + V x G1}- (A.34)
1
Lia=fo X | dSa{iwpGi}- (A.35)
2
Lu=—fox [ d$1{V x Go + V x G1}- (A.36)
1
Ly =—fio x [ S iw{eoGo + €G1 }- (4.37)
Lya =fio X | dS:{V x G, }- (A.38)
2
L3y = —#3 x /S dS1{iwuG,}- (A.39)
1
L3y = fig X /S dSi{V x G, }- (A.40)
1
L3s = fig X j dSy{iwpGy} - . (A.41)
2
Note that Lyj; = -L2; and if ¢ and pu are interchanged L;; = L2;. Further, if
surfaces S; and S; are interchanged L;3 = -L3; and L;z = L3z. Equations (A.32)

through (A.41) with the G’s expanded match Mitschang’s derivation [70] in which he
used the vector and scalar potential formulation. Finally, using equation (A.27) and
not using (A.28) corresponds to the electric field integral equation (EFIE) approach
discussed by Rao, Wilton, and Glisson [81]. If (A.28) were used and (A.27) were not

used, this would correspond to the magnetic field integral equation (MFIE) approach.
If a weighted sum of the EFIE and the MFIE are used, this would correspond to
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the combined field integral equation (CFIE) approach discussed by Rogers [120] and
Mitschang et al [70].

Now rewriting (A.32) as three distinct equations gives

flo X Einc = —ﬁo X/ dS1iw{#oEo+u=G=1} '71 +ﬁo X/ dSl{V X 50+V X 61} 'Ml
S; S

+ﬁo X / ng{iwp.El} . 72 (A.42)
Sa

r‘zox_I_f.-,.c = —fig X dSl{V Xﬁo+v Xﬁl}'jl —fig X dsliw{for—éo“}'éﬁl}'ﬁ;
S; sl

+fo X dSz{V X 51} . 72 (A.43)
Sa

0= —fig X / dSl{iquI} '71 + ﬁz X / dsl{v X 51} 'Hl
S] Sl

+fig X / dSy{iwpuG,} - T, (A.44)
Sa

After expanding G, (A.42), (A.43), and (A.44) become (with R= |f — 7'|)

lko

- _ eikoR
ﬁoXE;'nc = —ﬁo X / dSn'wqul - ﬁ.o x V d81
S 47R S

Wﬂo

SR T
eik;R
47R

— e'kiR -
~fox [ dSyiwpdii— — o x ¥ S Wk (g Jl)

s, 47 R k.2
tkoR
R+noxVxV/ dSlkz(V M)

ik;R l.klR
R+noXVXV dSlkz(V Ml)

‘lkoR
+ g x Vx dSlMl
S

+ﬁoXVX/ dSlM1
S

ikl ‘w,‘

- fto X ngtw#Jz

+ﬁoXV/ ds
S3 47R Sa 62

AR NI .-.--..r

A,
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:koR —
i R —no)(VXV/ dSlkz(VJI)

elklR _ c'klR
R—noxVxV dSlkz(VJl)47rR

c1'k¢)R

47 R

ﬁoXﬁ;‘nc = —ﬁo x V x / dSlJl
S

— fig X V x d5171
S

eikoR v 4s :weo V.57 etkoR

— ds M — fig X -5
noX/s‘ 11weo M 4R o /Sl 1 ( 1) arR
shR lk;R

— —noxV/ dsl'“‘(v Ml)

— fig X/ d.S’lzweMl
5

t’nR

— e |kR
fig X V X dSaJ
+ 7o ,/s, 22 R

AR

+fig X V X V/ dSz (V Jg) (A.46)
Sa

_ 1k| tw# - c‘klR
0= -y X s, dS;zprl iR —nz X v dSl k2 (V . Jl) arR
Iklﬂ

7 VxV ds
R+n2X X ‘/SI lkl(

Ik;
wy —_ €
(V ' J2) 47 R

lkln
+ ﬁz x V x dSlMl
S

VM)

Sklﬂ

+ fig X dSztw/J,Jz 4+, xV ng

5 - o (A.47)

These three equations have functions with the following form:

tk|i‘-—?‘|

() = %v xAl) = /V V x [T(7) e (A.48)

Now from Appendix A-1 equation 14 in Van Bladel [127]

V x(Ad) =VAxa+ AV xa (A.49)

Therefore,

eskir—r1 _ ekir-rl eikIF—F| -
y [ } 7 U xT(F).  (AS50)

The second term on the right is zero since V = V(f), and thus

_ eikir— F‘] _ ctk|?—f’|
H(r) = / (| ) x T(r)ar’ = - /JF' e ar (4s)

r'

e an e,
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which gives
_ 1 - , cikl?—?’| .,
Fl = — 52
T 47r/VJ(,-) x V() (A.52)
and by duality
_ e'kR ikjF—¥|
E() = -V x —/ M) =—_/ M) x v'(% ). (4s)
Using these results and the fact that V x VA = 0, (A.45),(A.46), and (A.47)
become
s L . e'koR w —~ | etk B
noXE,'nc = —ng X s, dSltw#oJl arR - no X V/ d51 “0 (V . Jl) arR
. lklk tw s'k.R
—ng X s, dSlzwy.Jl 4rR —noXV/ dSl “(V ) 4R
lkoR C IR
+ fig X dSlMle( )+noX/ dSlMl)(V( )
S 7|'R
tk;R lk;R
+ioX | dSyiwpds—— +fio X V dSz twp (V-T5)° (A.54)
Sa R k2 47|'R
R R _ , eikoR R , kiR
oXH;nc=—n0X s, d51J1 x V (47|'R) —noX/:gldlel x V ( 7I’R)

SkoR iWGo 1koR
—nox/SldslthQMl R—-noxV sldSI k2 (V 1\41)4 R

__ JikiR _  ¢ikiR
—fzox/ dSyiweM, —noxV/ dsl""‘(v-.M,)c

S: 4T R 4R
e:‘k;R
+ fig X /& dS;J, x V'( R ) (A.55)
_ _ eitkiR etki R
! 0=—4;x [ dSviwpli— — iz x v/ ds, “‘”‘(v Jl)
: s,
tklﬂ _ :k R
+ fig X dSlMl X V'( .y ) + g X dSztwp,Jz
iklk
+AzxV / ds; “"“(v 72) 2 (A.56)
P’ 4rR’

- -
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The desired approach at this point in the derivation is to change these three
integro-differential equations in the three unknown surface current densities into a ma-
trix equation which can be solved using inversion techniques. To this end, the method
of moments will be applied using basis functions and a testing procedure developed by

Rao, et al [81]. Now the basis functions [81] are

N
T(7) = Y LT.(7) (A.57)
— N' —
M\(7) = Y Knfou() (A.58)
n'=1
_ N"
Ta(F) = ) Lo f o (7) (A.59)
n!'=1

where n and n’ are defined over the surface of the coating, and n” is defined over the

surface of the perfect conductor (see Figure 3.1). Furthermore (see Figure 3.5),

_ 2—‘:?;7;{', #in T;}
fulF) = ;f-‘ﬂfﬁ;; Fin T, (A.60)
0; otherwise
and
Z‘%; #in T}
Vi Tal®)={ -t #inTy (4.61)

0; " otherwise.
Substituting these basis functions into (A.54), (A.55), and (A.56) yields

tko R

XE' =_ﬁox dSu‘)“If(r) ikOR—ﬁ XV/ dS 'qu(VI I?(Fl))e
inc s 1 O0in/n xR 0 s, 1 k2 nin 47{R

‘lklﬂ

—fig X | dSiiwpl.f,.(F )

. twp
s, iR —figx V d51 (V, Inf (7—"’))

4T R

tk R lklR
+ fig X dSlKnlfnr(—') X V'( ) + fig X / dSlKnlfn,( ) X V'( )
S

4R
. clkl
+ fig X s dSatwuLan f pn (F ) iR
twy , sk R
+ no x V dSz (V Lnl' fnn (f )) (A.62)
Sa 4T7R
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—_— —_ e‘kOR — » , eik]R
fioX Hine = —fig X dS1Infn(F) x V'( ) — fio X / dS11,f . (F) x V'( )
S, 4rR S arR

ikoR

‘lkoR
o x v/ dsl“"‘° (Vs KnF (7)) 5

-ﬁox/ dSyiweo K Fr (F)> TR
S

sklk X Twe , etk1 R
— fig X L dSyiweKn T o (F) -~ Mo X v/ dS1—5 P (V% - Kni i (7)) i
lklk

+ fig X dSan”fnu (7') x V' (

., 3 ) (A.63)

Skl

0=—fzx | dSpiwplaf, () R
Sh1

+ fig X / dSlKnlfn,(F') X V'( ) + fig X / dSziprnNTnu (F’)
$) S5

iklR
—~ 3 X v/ ds,“‘”‘(v' LT ()4

e‘lk;R

4R

“AJ[I — lkl

+ n2 x V d52 k2 (V" . Ln"f"n )) (A64)

By using Galerkin’s method, where the weighting function equals the basis func-

tion, and forming the inner product which is defined as
< f,g>= / dSf-g (A.65)
s

we get functions of the form

<Eincsfm >=< A, fpn >+ <V, > (A.66)

By the vector identity V - (§A4) = A-V® + &V - 4, the second term in (A.66) can be

rewritten as

<V3,f,. >=/

dSV - (®f,.) ~ / dS®(V-7..). (A.67)
s

By the two-dimensional divergence theorem, [ dSV-A = §_dl A-#, the first term in
(A.67) vanishes due to the fact that the normal component of f, (7) at the edges of S

is zero. Using (A.61), the remaining integral in (A.67) is approximated as follows:
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/dSQ(V fm) =1 [L dSQ——l—/ dS«I)]
s CIm T AR U Am Iz
& U [D(FST) — ®(757)) (A.68)

where the average of ® over each triangle is approximated by the value of & at the

triangle centroid. Similarly,

—inc vy _ 1 Eine —+ 1 / Einc —
<{ A }’f"‘>"""[2A,t/T;dS{ Z} Ay L I O L

Using the approach outlined above, (A.62) becomes (with -E—,i = Einc(FeE) and

RE = |FéE — 7| and where m is defined over the surface of the coating)

IRy A R B - U o SO S A AT0
m m'T"' m"_z_']"m rrm"2_+ mn ° 2 + @ — mn] ( )
where
A / dSuiwnolnFulr) e _ [ dSiont T, () e
= — [A] nfn — nfn
mn . vwuols f (f)m s, vwpln f (T)m
ikoRE ik, RE
+ | d$i KT (F) x 9'(¢ /dSK,.:_,"xV'e
5, S ) X Vo) 45 T ) XV (o
_ _le;k,}z:
+ dS ) Ln" " A.71
5, el I ) g (am)
and
; ikoRE
+ _ tWio - e'"oftm
oL, =— s, dS, p (V- Inf (7)) o RE
: ik, RE
W ) o g C T m
- dS;— (V' .
/31 1 k? ( s Infal(F )) 47I’RmI
m _ etk Ry
+ dSy—— (V" « Lo f (7 . AT2
" 2k§( o Lnfpn (f))m ( )
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Similarly, (A.63) becomes (with _IT,:, = Hine(F%) and R%, = 7% — 7| and where m'

is defined over the surface of the coating)

et P =  Paw | o-
lml Hm’ . —%- + Hm) . —2—] p—4 lmi m'" . % +Bmlﬂ . —2—' + em,n - 9;,".] (A.73)
where
n eikoRf‘, eiklR:‘,
B..=~[ dSiI,f.(f)x V' -/dSI_"xV'
m'n s, tInfn(F) x (“—R;E-) s, 1Info(F) (m)
e:‘koR:, cik;R:,
- dS1 Kn’—nl_l ‘—/ dS;t K’_I_’_—'—
S, 1weo f (r ) 41er‘, S, 11wekn fr (r ) 47rR:,
_ LIPS
+ [ dS2Lpn fou(F) x V'(—1) (A.74)
Sa 47R_,
and
. ikoRE,
Ot = - [ 45,22 (, KTl o
m'n s lkg( s nfn( ))47FR::
_ / 48,5 (v! . KT (f'))eiklRi' (A.75)

Also, (A.64) becomes (with RZ, = |7%, — #'| and where m" is defined over the surface

of the perfect conductor)

_ F 0/ L _
Om" = lm” [a—':un . —';—‘ -+ Cm"n . % + ‘I,m"n - \I’:;"n] (A76)
where
— ek RE,
C Ny — — dS t(d I f F'
mi'n 5 5 pln fo( )mf;
_ RLIY Sl
+ dS K [ ' F, X V,
[ 451K x9S
_ LY Sl v
+ dS tw L ” " 7-", —_— .4.77
/s, s LT () (4.77)

o N, Ty, m,
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and
ik RZ,
twy - e
v, =— [ ds VI f L (F
mi'n 54 179~ k2 ( nfn(r )) 47rR:,,

ul)[l tk;R

+ dSZ (V Ln” fnn (f )) ——TZT— (A.78)
Sa

Substituting (A.71) and (A.72), (A.70) becomes

-+ ﬁc+ o= ﬁc— P ln —+ C'koR
lm Em . —23- + Em . —'2"—] = l m . dr thoIn 2Ai Pn 47rRm
tklR d ln' + v ikoR
- d'iwpl, Kn —1 5% x
r Fiwp Ai .- + e FKn 24% P (4 BT
l ’ ka; l " e‘kIR
AF K ——p% x V' +/ dr'iwp Loy ——p=, ——— }
T Jrs O g o X (47rR::.) e R AR P R,
ﬁfn— / l" ~+ eikonm ] [n _+ ctk;R_
dF’ In - df'swul,
* { Pl TP R Jpa B InEPN
+ [ dFKw gt V'(eikon;) +/ dF K ,—"" pE x v'(e‘k'R;‘)
= 245"V 4nRm’  Jre " 245%™V 4R
l " e‘klR;
+ dF' swp L 5, }
/',-t Hm Af,,p "~ 4r R,
twio I, . e'koR% / L twp I, . eikiRA
+<¢ + aF —— I (=) —— + aF —=1
{ /;',f k2 ( Af) 47 R}, 1t k% n(£ Az ) 4rRE
,w“ Lo | ek R } { / L iwpo eiko Ry,
- d¥ ——L.» :}:T - dF ——1.
‘/T*n kf " ( An" 41I‘Rj,; * T* k2 ﬂ( Ai) 47 Rn
twp l, | eF1Bo / iwp [ | etk1 R }]
+ a7 —I,(+ - df ——=Ln A{A.7T9
T2 k? n( E) 47 Rm T, k2 " ( Anu) ATRm ( )

Rearranging (A.79) into a more compact form, it becomes

l [—+ pm _‘ .pm]z

. + . ; +

swpo lmln _ 4 / P etkoRm I Y /' _ etkoRy
In|- . d + dr

S EPTIVVEIL T "PnTRZ drweo AT Jrz  RE

m
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sk;R,‘f, | ki RE
+I,,[_‘_“£""’"—=¢/ dF' Py~ * ) ]
m

4T 4AF 4nwe AX T* RE

K |t et / 5L x V' (E e )]
" 47!' 4A 2AE Pm T Pn! R%

i 47I’ 4A T* n! RZ

m

[fwp lmlnr o4 /' Sy €
Lpn pe ar poy ——
| S B, P s P

=t Iplpn L€

tklRm
A= . T RE A.80
4mwe AZ, TZ, ] ( )

Substituting (A.74) and (A.75), (A.73) becomes

. +
+ Py Dot Py bt ko R
lml Hm' m+HmI° m]—-lm’['zn‘{—‘/T*dTI An V( )

2 " 47 R7,
/ AP I p x V(. e P / diweo K L g E
= "24E’" Ry, T fps TN g E P LR
/ dFiweHp e 5 b + / dF Lon 220 5%, x v/( iklR;l)}
% ™ 24% "™ 4x R, s, 2An,, P TR},
555 I . ko R, ROV
+2 | dF] p / dF' In —=p= x V'
2 { /:r,* oAz’ " 47rR‘ ) - Tingat (47rR;,,)
ln’ + etkoﬂm, n’ + elklR—,
=N =4
/T*, df iweg Ky 2A* P R, r dFiweK, 2Ai Pt R,
. SRR,
+ dF' L "——:T:_ w X v’
/;.:t " 245 Pn ( 47R_, )}
nt? m
~ +,
TAT l,, ek / _,zwe etk R, }
+ d¥' —— Kn: (-5~ dr K ' j:
{[p: kz w A%, 47rR w( ) 4nRY
ko R~ ik R
_tweg lnr | €70 m / L Iwe lp e
- Kn (£ dr ' (A.
{ * dr k2 w Xf) 4TR_, + k2 72 fn (iAT) 4r Rm, (4.81)

Rearranging (A.81) into a more compact form, it becomes




sa s 80V,

» :.'- N, \
X P WS T e

Appendix A. Derivation of Governing Equations 117

I __l_lm'ln_cd:/ d#_ixv’(eikoli:,)
" Az P T RZ,

m

+I[ RRLL P d7'p xV(‘kR )
ar 44T "™ s “RE

m’

K [ tweg lmilp et /' & " cikoR:I N N Lntlns / i eikoR:/ J
' — 7 ] r
" 4r 44f Pm T Pn RZ, dmwpo AL, Jrs RZ,

K [ fws lmllnl et / d—l—:{: ciklR:; N : lm'ln’ / i eikl R:f

] " ] T
S EPTIVERL T TP TRET Tt AL Jre RZ,
1 Im‘ln” tk;R
) A P / dF'pE, x V' : A.82
+ n 4” 4A pn ( le ) ( )
Substituting (A.77) and (A.78), (A.76) becomes
~c+ ik1R+
= P " J ln _:te
Omer =lgee | 2— - 4 — dfth
= tm [ 2 { e R AE " aRE,
lnt e‘klRm" Lon CiklR;:”
+ | dF Kyt x V' (——— +/ d¥ iwpLpn —2— 5%,
T " 24% fn (47rR,';,,) T, Hm 2A%, o R},
—c—~ sk, R™ tk,R™
pmu { R l'l S [ m!! s lnl e m!!
+ -9 - df iwul, + df Knt ——p £ x V' (—
2 T - "2 *p" 4rR_, T " 2A Pn (47rR;,, )

1 Lo 4+ e‘klR—
+ dr iw L " "
/Tt,, o S aE, ™ xR, }

n’’

wy ln RLIT A / wi Lo | e *1 B
+ dFf —- I, (+ _— dF —= L (£ ——) —r
{ T:k k% "( A:t)47rR T: k2 ﬂ( Anu)47l"Rmn
Wi I\ eF R / nm Ly | e B
- &' I (£ —) ——n- — dF' —Lpn(£—5—)——— }!. (A.83
{ e k2 { A$)41r12,;,, T, "k w Af,,)er;,,, (4.83)

Rearranging (A.83) into a more compact form, it becomes

+ R
O = I | — 228 Ll e / P S T el
T A g P R dmwe A% [rz RE,

m!!

1 lm”ln’ ot d"'i V' c‘k‘R:n
e [ e ()

mll

m't

ik RE

swp lpnlpn / + € m
+ Lp» pes, - dF' o=, ———
" [ 4an 4An,, P T+ Pr

"
n!? m
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—t l nl 7] ‘klRm“
+ / d7’ ‘——}—] (A.84)
4Twe Ann T:" Rmu

By using the fact that

etkRa, r N etk R
RE ) (Fo& —7)(1 — skR; )(R,ﬁ):*

where RE = |Féf — 7|, (A.80) becomes

v/( (A.85)

sc+ _ _ zc—
lml_j‘jrt' p; m_’_)_z"'_] =

I, [_ 1wpo lmln

5 s etkoR :i: i lmln/ d_'eikoR,’,i
r Y
4r 4Ai T* Pn drweo AF Jorx Rm

c:i: /
m
I, ;k,R* : ik, RE
o[- i / b tnls [ gt
pra 4A,. drwe An Jri R

+K 1 lmln :t _,)(1 1k Ri)eikoRﬁ
' —_7r —
v LT EIE
+Kp | — f Fef — 7)1 — ik RE) ——
n~47r4A' Tm )( 1 m)(Rm)S
F:wul Lo etk1Rn
Lo —c:!: d—l-—:i:”
- lmln"/ _’eikan‘]
+ dr . A.86
4Twe Af,, T2, RE ( )
Similarly, (A.82) becomes
~c+ —Cc—
+ P ] —— Pt
It [—m,. m +H_,- '2n ] =
. +
I,.[ - lm'l"pCi, / dr' ¥ x (7 - #)(1 — ikoRE )e‘kOR"'
am 4AF "™ Jpe T T UM ™ (Rm)?
. +
L tmitnex [ gonk o (ret a1 ik, RE )‘tk'R""
S ERTRVEIL N S S Fm(RE)?
4 . .
Ko _tweg lﬂ.ln, ey / a5t e'koR, L Lot b dF,e:koR:,
TLoam aAZ "™ Jpe UM ORE S T dmeme AL Jps  RE,
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0 pE
+K 1w€ lmllnl C:h / dr p lklR :t t lmllnl d’-' e'kl le
U ' i
n 4 4A:k Pm n i: 4Twp Ar:t:' T R:i:

ml
ik RE,

"l — I i d—l-i,, Fet 1—1tk R, ¢ :—] A.87
+Ln [41'.&-5-’,173 /T*" ' Bn X (Font — F')(1 — ks m)(R B (A.87)

. + . . +
. LY Sl i Ll _letklRm,,
df Pn + T df I
T* RZ, 4rwe Anx Jrz R

m m'’

1 lm"ln' ek /- tklR ]

+ Ko [I; 4A:t Pmn * & dr'p ' x ( Tmn —T )(1 - 'klRm”)__T;
L

" )
'l’ m

twp lpolgn 4 / g+ etk R

- Lp» o T L E "
" 4 4A nt Pm " m!
~1 Lol ‘klRmn
M it gy 7 L § (A.88)
4Twe Anu T:" Rmu

Equations (A.86), (A.87), and (A.88) yield a system of equations which can be

written in the following form:

im [E 2 E;; E;f"_ Zmn Zmnt Dmntt I,
I |H o - P TI_—: . _mL = Zm'n Zm’n’ Zm’n" Knl . (A.Sg)
m [——1: om” m 2 ] Zm'n  Lmi'nt  Zmiran Lpn

This equation has the form of V. = Z - T where V represents the incident electric and
magnetic field excitation vector at the boundary surfaces. I represents the unknown
electric and magnetic surface current coefficients, and Z represents the interaction ma-
trix for all the triangular patches used to model the surfaces. The unknown surface
current coefficients can be found by inverting the Z-matrix and multiplying the excita-

tion vector by the inverted Z-matrix. The Z-matrix can now be written as

CZ1 CZ2 CZ3
CZ4 C25 CZ6 (A.90)
C27 CZ8 CZ9

where the individual elements are
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cm:[—iw“ 0 bmln e / df’p?fe‘kOR 4t lmln d_,e*oﬂ]

+

L

4T 4A% RZ drweg AT S

ES .
1wp,l la ci /‘ -ie:klk,,. % 1m1n/‘ _,e"“Rm
dr’ * df —— .
i 443" "PnTRE T amwe aF IV TRE (4.91)

[ etkoRE
1 l lnl -C:h -+ -C:t 0
n' m
1 Il ci %i ., etk RE
all by 24 dr pE x -#)(1- ’klRm)"T(R E (A.92)
m
73 < | W imln oy / P LT b e 403
| 4ar 4A P r T Ppn E3 4Twe Af” Tt T —rm (A.93)
1 l ll + _ cikORt
0za= [t [ arst x (55— A1 - ihoRE)
1 lmlln —c+ g+ o4 i ‘klRm
+ i PVE: P - drip, x (Fo —7)(1 - 'klR’”')(_—JT (A.94)
- * : +
1UJ€0 lm'l"" + / = =% c'kOR"" 1 | Y e'kOle
CZ5 = a¢ ; d A mitn _
| 4r 44F Pm TP R,ﬁ, dmwpo AL T ar Rmzf
[ twelprln c:b / AL R It L R%
+ - T Pm’ d ' :t .
| 4m 445" § p" :t, 41rwy. A / dr’ (4.95)
CZ6 = 1 Imllnll c:t d"‘ et e'k R
47[’ —m——p ot T Pupn X (Tml )(1 - lklRm,)T—( ) (A96)
- . 4 . +
'w# lm"ln + / C‘klR"‘" t el e‘k‘Rm"
CZ7 = pe " d-l—:t :t mon / F— .
ar 4AZ 0 e O P RI, ~ 4mwe AF Jqz @ £, (4.97)
CZ8 = 1 lttlp pc:b . / di,-lﬁ:i: % (’._.c:h _ FI)( 1k1R )efk(R ] (495
x Fm" n' " " .
an adn T " " (R )?
4 pE
N‘)p lmulnn + _+ e"‘l Rmn
ng = 47!' 4At,, fn" '/ df-'lpnn I
" m
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d’

" H ‘kl R
=t "" In ] (A.99)

41[0)6 T* m”

Now to satisfy duality, CZ2 = -CZ4. Further, to satisfy reciprocity, CZ2 =
-CZ4T, CZ3 = CZ77, and CZ6 = -CZ8T. Multiplying (A.88) by -1 gives

: E S
g Ot = I, ﬂl"‘"l” c:if’ / df —i e'klR i + —t dprrln dF e‘k‘Rm"
p m " 44 '™ RE dnwe AEF Jr: RE,

m" m

i 1 l "l ' tkl Rm
. + Kp [—4_;"_A:E':_-¢"=‘i;' / dF pn, —f;l,:' - -l)(l - 'klRm")—T_]

m")

. kR
. YATTY 7Y Y et /‘ - et i
~ + Lpn |— o T E . dT [ vy
v " [ 4 4An,, pm" Tn” pu Rmu
N i lm"ln" _leiklRm"

T d —- A.100

: 4Twe A7 T d Rm” ( )
] nt!

and therefore,

+ . *
tklR " -1 lmuln e'k‘R

d"—i—- .10
4Twe Af T R }A 1)

e o 288 a"a’

ar 4AZ Pm" Pn"RE

mll

CcZ7= [“‘"""‘”"‘ 5ot / 7' xS
T

iklni

v
‘ [ 1 Ll e Tm
’ CZ8 = _——_— —C:l;_' '/ dr l n - 1 - k R n A-102
- : E S
lWﬂ- lmulnn + /' I e‘kLRmn
CZ9 = pe " dF 5,
L 47|' 4Afn PYERLS T:,, fn R:"
. pE
i lmnlnu _’c‘klRm"
troe A%, s, RE, | (4109)
N Thus, the system of equations becomes
\
o]
)
BB B ]\ (e G T\ (I
It [-—m: . Hm, . Ppt '] =| Zmn Zmn  Zmrnv Ka | . (A'104)
om" Z"‘u,l Zmllnl Zm"n" Lnu

WAL Y e S S Y ST

o, .r,‘
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- where now CZ1 =~ CZ1T, CZ2 ~ -CZ4T, CZ3 ~ CZ71%, CZ5 ~ CZ57, CZ6 ~ -CZ8T,
and CZ9 ~ CZ9T. Finally, multiplying the middle set of equations by -1 yields a

symmetric Z-matrix:

tm(Ep- 5=+ E,,- 5] cz1 cz2 cz3\ ( I.

", 1l=1cz4 cz5 cz6 || Kw |. (4.105)
. |H_,- H , » -l n
™ om»+ mo2 C21 C2Z8 CZ9) \ Ln»

where the individual elements are

_ o bk e / i _ic”“’n L% lmin / g EoR
4x 4A,. RZ 4Twey AT T* S

whlmln 4 / 4+ etk R i Imln / _,c"“R
ZEmn . dF’ + A.106
+[ 142" J TP RE T e aF I ¥ RE| (A1)

1 bl Ry
cza= [t [ arnt x (st - )0 - ikoR) S|

T 445, - (R )3
+ ilmln’ et / dflﬁi' % (Fc:t ~#)(1 -ik,R ) (A.107)
FERVERSRY P (Ri)s
iwu lmlnu —e+ / 13 eilan. —i lmlnll / _’e‘klRﬁ
CZ3=|——Fpm- |  dFpi + '
[ maag, m rs, U TRE T e AR, T*,.d mE 41
C74 < 1 il o4 dF 5% 1-thoR 'kOR:
= g 7 O =N~ o) s
+ -l Imin ~c+ / dF' 5= x (-c (1 'k R ) ’ka: A.109
a7 aaF 0 g O G =P B g | (4109

. +
zweolm:l,.: + / ko, — lm'l,u/ etkoR
CZS_ —cl d 5L :t d_l
| 4w 4AE, m e drwuo AT, , T

[$we I el 5% "“R =t Ayl _,eik‘Rm'
+ 4WF m' / dr pn' :i: :t47rw“ Af, / dr Ri ](A.IIO)

-

L byl e ek R,
CZ6 = dr nu X )(1 - ‘lklRmp) ) (A.lll)

Tan 4A%, P (R
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\ CZ7= "‘"”"‘""‘-‘* / P B L / d-’—T"'k'R A.112)
. - 47|' 4A:h P ﬁ i':n 4mwe A% Tf R .

3 C 1 Ll zk,Rm
CZ8 = | -—— n _ci;, '/ d B ’-,-Cﬁ':, — 7)1 —1tkyR=, A.113
" ar 44k Pm s P By X (Fraw — F')(1 = ik1 R, )—;—(Rm") ( )

* o™

. ik, R%
Wi lmulnu + / I et m!
» ng = |- - F pe ’ dT T oE
. [ 47r 4Anu pml Tt pn'

. Y t
1 lm"ln” _Ie‘klnm" ]

T — | A.ll4
4rwe An,, T 4 R ( )

¢ A symmetric matrix can be inverted by techniques such as border inversion or LU

decomposition. For border inversion the entire matrix does not have to reside in core
memory at the same time. This can be important for coated targets of any appreciable
dimension with respect to wavelength since the size of the Z-matrix will be very large.
Equations (A.106) through (A.114) represent the symmetric Z-matrix as computed by
program EFIE2C.FOR (see Appendix B).

i Pl

A.3 Partially Coated Perfect Conductor

This section contains the derivation of the equations for the interaction matrix

of a partially coated perfect conductor. The derivation of the governing equations

for this interaction matrix follows the same approach as that presented above for the

completely coated perfect conductor. Refer to Figure 3.3 as a reference for the following

derivation.

Using Huygens’ principle (see equation 3.1) in Region 0:

. —E_O = Einc + Ea

= Es’nc +/ dsl{iwyoﬁo -71 ~V x Eo H;}
5

+ dSz{iwﬂoﬁo . 72} (A.115)
S
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?I—O = 7Tim: + ﬁa

=Hinc+ | dSi{iweoGo-M1+V x Go-T1}
S

+/ dSz{V b 50 . 72}
S,

Using Huygens’ principle in Region 1:

E, = / dS 1 {iwpGy - T, -V x Gy - M} + [ dSs{iwuGy - T3}
Sl Ss

Hl = / dSl{iweEI '—M—l +V x 61 71} + dSa{V X 51 73}
Sl Ss

Applying the boundary conditions at surface S;:

Therefore, at S,

flo X Einc + ﬁo X dSl {iwuoﬁo . 71 -V x 60 . Hl} + ﬁo X / ng{iwuoEo . 72}
s; 52

=hox | dSi{iwuGy Ty -V x Gy - M}
S,
+ fig X / dSa{iwuﬁl . 73} (A.120)
S3

Also at S,

and, therefore, at S;




Appendix A. Derivation of Governing Equations 125

fio X Hinet+io X / dS; {iweoGo - My + V x Go - 1} + fio X / dS2{V x Go - T2}

Sl 2

=fig X / dSl{iweﬁl -_1\71 + V x —5-1 '71}
S,

+hgx | dSs{V x G -JT3}. (A.122)
Sa

Now, at surface S,

fig X Eg =0. (A.123)
Therefore, at S,
fig X Einc + g X dS; {iwuoﬁo -71 -V x E':o Hl} + fig X ng{iwuoﬁo 72} =0,

S S.
' ’ (A.124)

Now, at surface S3

na x E; =0. (A.125)

Therefore, at Sz

fl3 X dSl{iwual '71 -V x 31 . Hl} + ﬁa X ng{iwuﬁl . 73} = 0. (A.126)
Sl ss

This yields four equations in four unknowns: J,, M, J,, J3.

Using equations (A.8) and (A.10), equation (A.120) becomes

flo X —E—inc = —ﬁo X / dS;{iwuo-Eo . 71 -V x 50 . Hl}
S,

- ﬁo X / ng{iw#ogo . 72}
S

—leX/ dSl{iwp.El-jl ‘—VX_EI Hl}
S,

+ fig X / dS3{iwu§1 73} (A.127)
S

and equation (A.122) becomes




sl nn'i;-). . (Ll }.‘.\'.u. 3N Agat ARA A S A A A At O bt ! Rl oI o YA g atnd
Appendix A. Derivation of Governing Equations 126

ﬁo X Finc = *—ﬁo X dS]_{iWEoEo . —M—l + {V x a:o g 71}
S,

—-ﬁo X/ dSzV Xﬁo'jz}
S,

—fig X dSl{:'wezG:l . —M_1 +V x El jl}
8,

0 / dS3{V x &1 - T} (A.128)
S

and equation (A.124) becomes

S

dsl{iwﬁoﬁo '71 - V X 50 —Ml} - ﬁz X / dSz{iwp.()E—o . 72}

Sa
(A.129)
and equation (A.126) becomes

0=—fs x / dS1{iwnG,-T1 — V x Gy - M1} + iz x / dSs{iwpGy - Ts}. (A.130)
Sl 33

Equations (A.127) through (A.130) are of the form

Ly -J1+Lyg-My+Liza-Jo+ Lig-J3 = fig X Einc (A.131)
Loy -J1+ Lag My + Lag - Jo+ Laa - Ja = fio X Hine (A.132)
Lay-J1+ Laa- My + Lag - Ja+ Lag - J3 = fia X Einc (A.133)

Lot -J1+Lag M1+ Laz-Jo+Lasa-J3=0 (A.134)

or the more compact form

Ly Lz Lia L4 Ji Ao X Einc
L21 La2 Laz L M, fio X Hine

My | _ | Rox H 135
La1 Laz Lss Laa J2 ft2 X Einc (4.135)

Ly L4z L4z Laa Ja

o

Ul gt o L)

-

&
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j where
p
'l Ly = —fig X / dsliw{uoio + #51}' (A.136)
S5
. Liz=fox | dS{V xGo+VxG} (A.137)
.‘x S,
'
’ L13 = —fig X / ng{t'wﬂ.ogo}' (A.138)
Sa
o, L14 = fig X / dSs{iwuil}- (A.139)
. Ss
‘ Loy = —fig X / dSl{V X Eo + V x 51} (A.140)
- S
¢ Ly = —fig X / dsliw{co_a-—o + Eﬁl}- (A.141)
5
A
4 =
: Loz = —fig X / ng{V X Go}- (A.142)
v 5
: Lag =0 x | dS3{V x G}- (A.143)
3 S3
= L3 = —fig X / dSl{iwuo_@.o}- (A.144)
. S
y Las = fig X / dS,{V x __G:o} (A.145)
: s
N Laz = —fip X / ng{iwuo-a_o}- (A.146)
» Sa
y L3¢=0 (A.147)
.: L4 = —fig X / dSl{iwal}- (A.148)
N S

v h ke
Ce e A

- _-.';.;.' o ';-'.- e e R

R
LR & -
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L4z = fig X / dSl{V X 31} (A.149)
S,
L =0 (A.150)

L4q = iz X / dSa{iw[tEl} .. (A.151)
Ss

Note that L;2 = -L2; and if € and u are interchanged L,; = L32. Further, if
surfaces S; and S, are interchanged L;3 = L3; and Lz = -Laz. Also, if surfaces S;
and S3 are interchanged Lag = L42 and L4 = -L4;. Finally, this approach corresponds
to the electric field integral equation (EFIE) approach discussed by Rao, Wilton, and
Glisson [81]. If the boundary conditions on the tangential magnetic field at the surface
of the perfect conductors had been used, this would correspond to the magnetic field
integral equation (MFIE) approach, and if a weighted sum of the EFIE and MFIE
had been “sed, this would correspond to the combined field integral equation (CFIE)
approach {70,120].

Now rewriting (A.135) as four distinct equations, as done previously for the

completely coated perfect conductor, gives

eikoR iw”o _ eikoR
— A v .
R % /s, dS, (V-7,) o
lkl zw# ‘lklR
— fig X dsS J - N v ds v.-J
no /-;'1 1wpdy 4R ng X s, 1=5 ( 1) arR

1koR th
+ fig X dSlM1XV( WR)+noX/ dSlM1><V( )

k2

S,

c‘lkoR

lkoR
— fio X v/ dsz"”“° (V-T2) -
arR 5

- ﬁo X/ ngt'w,uojg
S

:k;R e"“R

+ Ao X / dSsiwud s> o ThoxV dss“”“ (V- Ta)
Ss

A.152)
. (4152

skoR

iklR
R)—nox/ dS;J, x V' (°

47 R )
;koR

4T R

noxH,,.c——nox/ dSlJle(

- lkoR 1(4)50
- ﬁo X dslt'u.)EoMl - flo X V/ dSl (V M )
S 4R S,
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lkx € :hR
- flo X dSlthMl dSl w (V Ml)
31 Sl
tkoR ‘Ik1R

—ﬁox dSszXV(

s, IR)+nOX/;d53J3XV(

47

) _ A ) _ eikoR . Wll-o etkoR
ng X Einc = —ng2 X s, dS;zwp.oJl arR —ng X v s, dS]_ (V ) 4rR
lkoR . _ etkoR
+ fig X s dSi My x V' ( ) — fig X i dSgiwpotz—
1 2
‘lkoR
— XV / dsz""“° (V- Jz) (A.154)
Sa
_ ‘lk;R “‘Ju' _ t.k)_R
= —f — v.J
0 ng X L dSlzqul arR n3 X v s, d51 k'f ( ) arR
lklR
+n3x/SldslM1 XV(4WR)
— kR twy RLIV
+ fig X dSatwulds + fig X V/ dS3— (V J3) (A.155)
Sa 47|'R Sa k

where R = |F — 7|.

The desired approach at this point in the derivation is to change these four
integro-differential equations in the four unknown surface current densities into a matrix
equation which can be solved using inversion techniques. To this end the method of
moments will be applied using the basis functions as defined previously in equations

(A.60) and (A.61). Now the basis functions [81] are

[» vy V.3 7T R W

- -

LN A

L o ]

“¥

4
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NIH

J3(F) = Z Prons f i (7') (A.159)
n'lt=1

" is defined over the

where n and n' are defined over the surface of the coating, n
surface of the exposed perfect conductor, and n'” is defined over the surface of the
coated perfect conductor (see Figure 3.3).

Substituting these basis functions into (A.152) through (A.155) yields

- ) oy - ekR ol 4 iwito gikoR
fig X Eine = —fio X/ Sliwllofnfn(r)47rR — fig X s, Sy P (VY- Info(7)) B
. 'klR . uu“ e‘lklR
—ngo X s, dSlzwp,I,,f (1—"‘) -~ nNo X v s, dSl k? ( nf ( )) 47R
_ ikoR -, , etk1R
w0 x [ diKWT ) x V() +0x [ dSKuTe) x V(S7)
etkoR X tw _ etkoR
—_ nO X / dS21w#oLn"fnu (r) R — No X V /52 dSz k:o (V, n"fn” (7_',)) 47|'R
SkIR
+ fg X dSaswp P fom (7 )
S3 4TR
fwp _ etk1R
+ no X V dS3 (Vl nl"fnm (7-'[)) 4R (A160)
. lkoR _ tkIR
floXH,‘nc=—ﬁoX/ dSlI fn(r XV( )—ﬁoX/ dSIInf ( XV( )
Sy S 4T R
. o ikoR . iwfo , _ P cikOR
—nox/Sl dSlzweoKn:fn,(r)4 5 —noxV/ dS) — k2 (V,-Kn:fn:(r )) e
lk]R . 10)6 _ elklR
~ fig X / dSlthKnlfnl(T ) iR — ng X v dSl—kT(V' Knlfn: (77’)) s
, ak R
—~ fig X /s, dSyLan f (') x V (4 R)
— lklR
i dS P " " V .
+ fg X 5, 45 Fam () x (47rR) (A.161)
. — N ) - etkoR twito - etkoR
g X Eipe = —ng X s, dSltwpoInfn(f') 4R —ng X v s, dSl kg (V; . Infn(fl)) 4R
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tko R eikoR

47 R

€
47 R

+ ﬁz X dSlK,.,ITn: (‘F’) X V'( ) - flz X / dSziwuoLnHTnn (17’)
S Sa

tw etkoR
—fgx V | ds,Xk0 e

2
Sa kO

(V4 Lo For (7)) (4.162)

ik, R eiklR

(V: . In?n(F’)) 4T R
eik;R
4T R

e N twy
~ngxV dS)—-
xR 27 [ TR

tki R —
) + ﬁ3 X / dS3iWﬂ,Pan fnlll (Fl)
S3
efk;R
47R’

0= —As x / dSyiwul, T, (7)
S,

e
4T R

+ fiz X / dS1Kn f o () x V'(
51

FhsxV [ dSsok

s —I-CT(V: * Pn'"Tn"’ (T_',)) (A163)
3 1

By using Galerkin’s method, where the weighting function equals the basis func-

tion, and forming the inner product, which is defined as
< f,g>= /;dsf-a (A.164)
we again get functions of the form
< Einc,fm >=<A4,f,, >+ < Vd,f, > (A.165)

Following the same approach as previously discussed for the completely coated perfect

conductor, (A.160) becomes (with E,in = Einc(fSf) and RE = |7 — #| and where m

is defined over the surface of the coating)

+ P - P P o P - +
_ Im Ep -2 +E,- 5 | =tm[A,, —~+Amn-—2—+<1>mn—<1>mn] (A.166)
‘
X where

A — — . etkoRy _ etki R
. A, = —/ dS1twuol, f (F - dSiiwul 7
> eikoRE ek Ry

+ dS\Kni f i (F) x V'
[ d5ueFun(r) x v/ )
ikoRE eiki RE

— | dSqiwpoL oy Foun(7)E + | dSsiwpPun T o (7 A.167
/;:2”0nfn()ﬁ 533”"]"()4er°§( ) ]

41|'R':§ ) +L dSlKn'Tn'(F,) X V,(

i

-




Appendix A. Derivation of Governing Equations 132

and

. tkoRE
+ — dS u“"#o VI . I rd -1 €
an /S1 1 kcj,; ( 8 "fn(r )) 41I'R,:$;
etki Ry

W oy r e
-~ dSy—(V, -1
/-;'1 1 k% ( 8 'l»fn(r )) 47!'Rm£

_/ s fwio (V- LanFon (7)) eikoRE
Sa z k3 o Tt 4rR%
Wi _ eiki Ry
+ dS - V’ . P e " 7 . A.168
s, 3 k? ( 8 n fn (T )) 47I'R$ ( )

Similarly, (A.161) becomes (with _}T:. = Hinc(FE) and RE, = |7°% - 7| and where

m' is defined over the surface of the coating)

-4 —C— —c —C—
L [, - 6"2"_' +H,, f’;_'] = Lyt B - ’% +B,., ”_rzn_' +05,, —0%,.] (4.169)
where
N gikoRE, kiR,
§,=—[d31‘f'xv' -/ dSiI.f . (F) x V'
m'n s 1 nfn( ) (47I’R:§, ) s, 1 nfn(f) (47I’R:, )
- ko R, eik‘R:’
- dSiiweoKn f o0 (F — dSiiweKp f . (F
/5’1 1 0] nfn( )47I'R':ﬁ, sy 1 nfn( )47TR,:‘::,I
eikoRi,
- dS L "— " fl X V,
S 2om fn ( ) (47|'R,:ﬁ:)
_ eiklR:,
+ | dSgPum fpm(F') x V'(Z_T) (A.170)
Sa ”Rm’
and
. ikoR%
+ IWEQ 1oy F o+ e m!
Orin ‘. dSl——k% (Vs Kn' f (7)) W EE,
twe eik‘R:'
- dS el V’ K / ’ 7 A171
sy lkg( 8 nfn(r))‘i?l'R:ﬁ, ( )
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. Also, (A.162) becomes (with RZ,, = |7<%, — /| and where m" is defined over the surface

of the exposed perfect conductor)

)
3 =c+ ~c— —c+
L] zmll [-E_;M'p_rzﬁ'i'*".ﬁmll'p_;‘—"] = lmll [E:‘" p;" +leln pm +\I’m” mn ] (A 172)
g1
p: where
v s ;koR eikOR* "
2 Cm”n = - dSliW[loInfn(r )—'T + / dSlKn'fnl (r ) X V,(———')
": Sl 7rRmII
- _ c:koR "
3 - / dSyipio Lo T () et (4.173)
X S R
'. a-nd
:
- L twito eko R i
"
‘Ilrn"n = —/ dS]-—kT*(Va Inf (1’ ))——RT
S 0
- ‘wuo ‘lkoR m!
:: — dSz (VI Ln" fnn (f )) ——"IZT (A.174)
) s
4‘ 2
Finally, (A.163) becomes (with R%,, = |23, — 7| and where m””’ is defined over the
<
S surface of the coated perfect conductor)
4
3
- — pc-};" _ P "
"' Omm = lm’" [-5:,:1'1" . _"2‘— + Dml”n . "2‘ + Am”’n - A.;:/nn] (A175)
:'-: where
: — etk;R " _ tk,R i
:: Drn”'n = —/ dSlzwpI,,f,,(r )__?_ +/ dSlKn'f ( ) X V,(—T
B, S lell S 47rRm”,
' 'klR min
- + dS3tw[l,an fn’" (1’ )_F- (A176)
Y Sa m
- and
4§
()
s
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+ ul)“ , |k1R mit
AL, =—/ dS1— (V4 - I f . (F ))—?—
k 4 le"
w tk],R mit
+/ dSaz 2“( nmfnm(r )) (A.177)
k leﬂ

Substituting (A.167) and (A.168), (A.166) becomes

I, |- 2o lmln ot / P R B / P
"Lo4m 4AZ™™ Jrr "™ RE T 4nweo AF Jr:  RE

swis Il ik Ry, ;1 ik, R%
+1, [—'—“___’" n pok ./* dPprt T4 1 mn [ 4t
T3

4w 44E"™ RZ 4twe AF T r " RE

+ Ky %%%ﬁff /T dr’ pn, X V'(%‘E)]

e o)

+Lon i—“:: 2 %:%ﬁf,.*. /T N 75, °'Z;i + 47“:60 'an; /T a7 e‘;’;‘]
e [ R] -

Substituting (A.170) and (A.171), (A.169) becomes

~Cc+ =C—

P Pt 1 _
ot [H s -"‘+H -2]_

I _l lmllﬂ -+ / d tko
"Taraag [ TP V(= “RE, )
1 lm’ln :!: / tkan,
I" pe ¢
+ [ ey dF'pE x V' (—TRm, )

ko RE . ko R
+Kp [———WGO bt b peE / dr’ pn: e gttt d"e‘ i ...']
ml

Rf‘, 4Twuo Af, T+ RE
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Substituting (A.173) and (A.174), (A.172) becomes
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dnmweo AL, Jr2, RZ,
Substituting (A.176) and (A.177), (A.175) becomes
. . E3
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“+ an [——Tp e " dr p " ——
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—i Ll etk B
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By using (A.85), equations (A.178) through (A.181) yield a system of equations

which can be written in the following form:

oy
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im(E- B +E,, - B
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(A.182)

This equation has the form of V = Z - T where V represents the incident electric and
magnetic field excitation vector at the boundary surfaces. T represents the unknown
electric and magnetic surface current coefficients, and Z represents the interaction ma-
trix for all the triangular patches used to model the surfaces. The unknown surface
h current coefficients can be found by inverting the Z-matrix and multiplying the excita-

tion vector by the inverted Z-matrix. The Z-matrix can now be written as

cz1 CZ: C2Z3 CZz4
: CZ5 C2Z6 CZ1 CZ8
. CZ9 CZ10 CZ11 CZ12 (4.183)

CZ13 CZ14 CZ15 CZ16

where the individual elements are
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N cZ2 = 1 imln peE / dF'pt, x (FE — #)(1 — ik Ri)TeikORi
E 4w 4AZ "™ T+ nt o Um 0T m/(RE)s
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+ —T""""‘" d¥’ ——f—-“koni" (A.194)
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Now to satisfy duality, CZ2 = -CZ5. Further, to satisfy reciprocity, CZ2 =
-C257, CZ3 = CZ97, CZ4 = CZ13T, CZ7 = -CZ107, CZ8 = -CZ147T, and CZ12 =
CZ157. Multiplying the second and fourth sets of equations by -1 yields a symmetric

Z-matrix:

ARl

’mm"?‘fEm"?‘]_ CZ1 Cz2 CZ3 C2Z4 I,
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Equations (A.201) through (A.216) represent the symmetric Z-matrix as computed by
program EFIE2PC.FOR (see Appendices B and D).
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Appendix B

‘. ) W

DESCRIPTION OF COMPUTER PROGRAMS

B.1 Introduction

The electric field integral equation (EFIE) programs are discussed in this ap-

'; pendix. This set of programs uses the method of moments to calculate the equivalent
electric and magnetic surface currents and the far-field radiation pattern of a user
specified geometrical construction. This geometrical construction is a triangular patch
model of the coated perfect conductor. The user specifies a geometry by creating the
" file GMETRY.DAT using the commands outlined in INPUT.DOC. GMETRY.DAT is
: the input for the EFIE series of programs. Various output files are generated by these
programs. EFIESR and EFIE5V will generate plots on a graphics terminal. These

plots can be viewed and manipulated in an interactive mode. The source code uses
PENPLOT graphics software.

B.2 Program Description

A brief description of the EFIE files and programs follows:
GMETRY.DAT— a user created file which uses condensed commands to create the
desired geometry. The condensed commands can be found in the
INPUT.DOC file. This file is the input to EFIE1. To view the ge-
ometry created by the GMETRY.DAT commands, run EFIE1 and
rename or copy the output file STORAGE.DAT to RESULT.DAT.
Then run EFIESV.

. EFIE1- translates condensed geometry specifications into EFIE usable

data. Surface modelling by triangular patches.
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INPUT: GMETRY.DAT —condensed geometry specs
OUTPUT: STORAGE.DAT —geometry modelled using triangular
patches
EFIE2C- calculates the “generalized” symmetric Z-matrix of an arbitrary
configuration of completely coated, perfectly conducting surfaces.
Surface modelling is by triangular patches.
INPUT: complex relative permittivity, €z, and permeability, ug.
INPUT: STORAGE.DAT —perfect conductor geometry
INPUT: CSTORAGE.DAT—coating geometry (generated by EFIE1
and renamed from STORAGE.DAT)
OUTPUT: RESMAT.DAT -Z-matrix
EFIE2PC— calculates the “generalized” symmetric Z-matrix of an arbitrary
configuration of partially coated, perfectly conducting surfaces.
Surface modelling is by triangular patches.
INPUT: complex relative permittivity, €ep, and permeability, ug.
INPUT: STORAGE.DAT —coated perfect conductor geometry
INPUT: KSTORAGE.DAT —exposed perfect conductor geometry
(generated by EFIE1 and renamed from STORAGE.DAT)
INPUT: CSTORAGE.DAT —coating geometry (generated by EFIE1
and renamed from STORAGE.DAT)
OUTPUT: RESMAT.DAT —Z-matrix
EFIE3— inverts the symmetric Z-matrix by border inversion
INPUT: RESMAT.DAT —Z-matrix
OUTPUT: RESMAT.DAT—inverse Z-matrix, i_l
EFIE5BC— calculates scattered electromagnetic field, E,, far-field radiation
pattern from the equivalent electric and magnetic surface current
distribution of an arbitrary configuration of completely coated
perfect conductors (triangular patches used to model surfaces).

Current density calculated across edges of triangles. This is an

interactive program.

......
- - o
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=1

INPUT: RESMAT.DAT —inverse Z-matrix, Z
INPUT: CSTORAGE.DAT —coating geometry
OUTPUT: SPATTERN.DAT —stored far-field radiation pattern
EFIE5PC— calculates scattered electromagnetic field, E,, far-field radiation
pattern from the equivalent electric and magnetic surface current
distribution of an arbitrary configuration of partially coated per-
fect conductors (triangular patches used to model surfaces). Cur-
rent density calculated across edges of triangles. This is an inter-
active program.

INPUT: RESMAT.DAT—inverse Z-matrix, Z

INPUT: CSTORAGE.DAT —coating geometry

INPUT: KSTORAGE.DAT —exposed perfect conductor geometry

OUTPUT: SPATTERN.DAT —stored far-field radiation pattern
EFIESR— calculates far-field radar cross section (RCS), o, patterns from
the previously stored far-field radiation pattern of an arbitrary
configuration of coated surfaces (triangular patches). This is an
interactive program. Output is plotted on a graphics terminal.
The plotting subroutines called by this program can be found in
PLOTR2.FOR which uses PENPLOT graphics software.

INPUT: RPATTERN.DAT —this file is necessary if user asks pro-
gram to read a previously stored pattern such as SPAT-
TERN.DAT generated by EFIE5B. RPATTERN.DAT is
simply SPATTERN.DAT renamed or copied.

OUTPUT: far-field RCS plots on a graphics terminal.

OUTPUT: DPATTERN.DAT —user readable file containing the far-
field RCS, o, versus angle data

OUTPUT: HDCOPY.PLT —far-field RCS patterns (user requested)
ready for printing.

EFIE5V— outputs GMETRY.DAT data in user viewable form. The geometry

created by the user can be viewed on graphics terminal. The plot
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produced is a 3-D graphics view of the geometry, and the viewing
angle can be changed. This is an interactive program.
INPUT: RESULT.DAT —renamed or copied STORAGE.DAT or
CSTORAGE.DAT file.
OUTPUT: plots on a graphics terminal.
OUTPUT: HDCOPY.PLT—3-D geometry (user requested) ready for
printing.
HDCOPY.PLT- file containing plots requested by user. They can be viewed on a

graphics terminal or sent to a printer.

B.3 Flowchart of Computer Programs

Figure B.1 is a flowchart of the computer programs described in Section B.2.
It is not a flowchart of the individual computer programs, but a flowchart to show
the progression through the EFIE series of computer programs used to calculate the

desired far-field radar cross section patterns.
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Figure B.1. Flowchart of EFIE Computer Programs )
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Appendix C

SEVEN-POINT NUMERICAL INTEGRATION
OVER TRIANGULAR SUBDOMAINS

C.1 Introduction

To calculate the elements of the interaction matrix, Z-matrix, an integration of
several types of functions over each triangular patch is required as shown in Appendix
A, equations A.106 through A.114 and A.201 through A.216. The integration of these
functions over the triangular patches is accomplished numerically using a quadrature
technique for surface integration over a triangular surface. The following sections of
this appendix discuss the numerical integration of these functions over the triangular

patches.
0k0 Rt

C.2 Integration of [ .+ df’ﬁf%ﬂ—— and [r: dF

. . ik R 1k Ri .
The integrations of [.,.: d7’ i—j—‘ 2 and [+ dF'—T—e 2 are accomplished us-
g Tu pn R T p

ing a seven-point numerical integration scheme over each triangular patch. When the
source triangle and the observation triangle are the same triangular patch, m = n, and
the singularity in these integrals presents a difficulty. The seven-point numerical inte-
gration scheme used is discussed in Chapter 3 of Kiang’s thesis {124], and will not be
repeated here. Further, Kiang’s thesis discusses the effects of various triangular patch
shapes on the computation of the scattering from perfect conductors. The seven-point
numerical integration over the triangular patches is an adaptation of the numerical
quadrature technique discussed in reference [125|. The quadrature values used in the

integration can also be found in Abramowitz and Stegun [126] on page 893. The inte-

+
gration of th di’ f‘——":—- and th dr’ —R% are accomplished in subroutine NINT7
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sk x
of fortran program EFIE2PC (Appendix D), and the integration of fT* dr’ ‘*5—;;——
mdL¢d

lklR

are accomplished in subroutine NINT7A of EFIE2PC.

leR*

C.3 Integration of fT* dr'pE x (Fexr — #)(1 - zkoR*)—(RT)a—

: Ed
The integration of an* dr'pE x (Fef - 7)(1 - zkoR*)(—;:;ﬁ- uses a modified

version of the seven-point numerical integration scheme discussed in Section C.2. Refer

to Figure C.1. Let

N 1koR*
—_ = = _ —
Ipn = - Fpa X (r )1 zkoRm) T(R )

Now, referring to Figure C.1, let

(C.5)

and A, is the area of the nth triangular patch. 7 is the vector from the global origin
to vertex 1 of the nth triangular patch. Similarly, #2 and 73 are the vectors from the
global origin to vertices 2 and 3, respectively, of the nth triangular patch.

Substituting C.2 into C.1, I, becomes

‘lkoRt
L = /* dF (7 — 7)) x (F2 = 7)(1 — zkoRm)(—;)—

N A A T e e e e S

T LT N
N v cod .- & q - o
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(F—F)x (FE —F)=F xFF —FixFSE +7i x 7
=(FE xm)+7ix 7 - x
ey - e

Therefore, using C.3 in C.7 and C.7 in C.6 yields

Ipn = / dr’ [( X 7;) + (Fi — 7<) x 1"']( 1koRm)'(‘;—:or}:,

_24,./ /”dedn[( % 7:)

+ (1'"' - 'Ci) X {r1 + r2 - r1)€ + (1’3 - 1’1)7]}} (1 - 1koRi) (Rm)

1 -n tkoR
= 214,;(7_';:,:‘t X ﬂ)/ / dfdﬂ(l - 1koR )Ta—
o Jo (Rm)

1 1-
+ 24, (F; — 7E) x /o / ’ dédn [{71 + (fa — F1)¢

tkoR
+ (3 — rl)n}] (1- ‘koRm)W

1—- -n lkoR
= 24,(75E x ) / / dtn(1 = ikoR3) s

1—n + lkaRi
+ 24,( ) X dédn(1 — iko R,
"/ [ deanta ik =) (RS

‘lkoR
+ 2A4.(F; — F;’,,i) x (F2 — ﬁ)/ / dédn £(1 - zkoRm)-(—;)—

tkoR*

1-n
+ 24n(F; — FEE) x ra—n// d£dnn(1—zkoR*)(R)

= 244,.(1""’,,:,h X Fi)Im + 2An(Fi = F *) X F1Jm

+2Ap(F;i —F i) x (F2 — rl)J5 + 2Aq (7 — r"i) X (F3 — F1)J0.

Finally,

Imn = 2A, [(i"f,,i X?{)Jm+(7a‘—fff) X {’_'IJm+('—'2"'F1)Jr€n+(F3“-

ikoRi

(C.8)




A I 5

Appendix C. Seven-Point Numerical Integration Over Triangular Subdomains 149
where
. 1-n + ‘lkoR
; / / dédn(l — ikoRE) S T (C.10)
’; ¢ l1-9 ‘lkoR
- Io = dédn &(1 — tkoR C.11
[ [ detn et - kot e (.11
X
l—-n + tkoRi
3 J"—// dédnn(1 —tko R . C.12
‘ gdn n(1 — tko )( RE)? (C.12)

A singularity occurs in these integrals when m = n. For m = n, which corresponds to

the source triangle and the observation triangle being the same triangular patch, I,

is set equal to zero since

d ‘lkoR

g ~ :!: .

' c / dr —C:k _ —')(1 - 3koR )W (C.13)
yields a vector in the plane of the triangular patch, 5°£, dotted with a vector perpen-
dicular to the plane of the triangular patch, s x (Fef — 7).

The seven-point numerical integration over the triangular patches is an adap-

g R

tation of the numerical quadrature technique discussed in reference [125]. The values
used in the quadrature integration can also be found in Abramowitz and Stegun {126]
on page 893. The integration of [ . dFpE x (Fif — #')(1 — ikoRE, )(':T)';' is accom-

plished in subroutine NINT7B of fortran program EFIE2PC (Appendix D), and the

RE
integration of [1.+ dF'px x (Fi — 7)(1 - zklR*)(T;)—a is accomplished in subroutine
NINT7C of EFIE2PC.
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A1 + A2 + A3 = Ah

Figure C.1. Source and Observation Triangular Patches
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Appendix D

EFIE2PC COMPUTER PROGRAM

This appendix contains the EFIE2PC computer program. The EFIE2C program
discussed in Chapter 3 and Appendix B uses similar logic. The EFIE2PC computer
program is written in the FORTRAN computer language. This program calculates the
elements of the interaction matrix, Z-matrix, for a partially coated perfect conductor
(see Chapter 3). The individual elements of the Z-matrix are computed according
to equations A.201 through A.216 in Appendix A. The Z-matrix elements computed
from each of these equations are calculated in subroutines ZPLPL1 through ZPLPL16
respectively. The PLPL designation is an abbreviation for plate-plate interaction since

triangular patches are used to model the surfaces.
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EFIE2PC
modified version of EFIE2 to handle PARTIALLY coated perfect conductors
version 1.0 September 1985 MIT

this program calculates the "generalized” impedance matrix of
of an arbitrary configuration of PARTIALLY COATED conducting surfaces

inverting and multiplying this matrix by an excitation will obtain
the current distribution and the far field radiation pattern

excitation may be by either plane waves or voltage sources
modelling of the surface is done by triangular patches
surfaces may be multiply connected

input filee STORAGE — geometry for COATED perfect conductor
input filee CSTORAGE — geometry for coating

input filee KSTORAGE — geometry for EXPOSED perfect conductor
output file RESMAT -~ Z-matrix

at present 1000 unknowns are permitted
PROGRAM CMPUTE

INTEGER MNODESMEDGES,MFACESMWCRDSMUNKNS
INTEGER NNODES,NEDGES,NFACES,NWCRDSNUNKNS,NWSEGS
INTEGER JNODESJEDGES,JFACES,JWCRDS,JUNKNS,JWSEGS
INTEGER KNODES,KEDGES,KFACESKWCRDS,KUNKNS,KWSEGS
PARAMETER (MNODES=300)

PARAMETER (MEDGES=900)

PARAMETER (MFACES=600)

PARAMETER (MWCRDS=2)

PARAMETER (MUNKNS=600)

INTEGER WIRE,PLATE,STATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMPLEX JILKN1,JWU14PX14PWE,JWE14P X14PWU
COMPLEX CZ(MUNKNSMUNKNS),CV(MUNKNS),CIIMUNKNS)
COMPLEX CCV(MUNKNS),CCI(IMUNKNS)

COMPLEX KCV(MUNKNS)XKCI(MUNKNS)

REAL PLKN,JWUO04P,X14PJE,JWEQ4P,X14PJU,X14PI

REAL DATNOD(4,MNODES),WR(4MWCRDS)

REAL CDATNOD(4MNODES),CWR(4,MWCRDS)

REAL KDATNOD(4MNODES)KWR(4MWCRDS)

INTEGER NCONN(2MEDGES),NBOUNIX6,MFACES)

INTEGER JCONN(2,MEDGES),JBOUND(6,MFACES)
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: INTEGER KCONN(2MEDGES),XBOUND(6,MFACES)

" INTEGER SEG(4 MWCRDS-1)MAPUNK(MEDGES+MWCRDS)
INTEGER SEGJ(4 MWCRDS-1),MAPUNKJ(MEDGES+MWCRDS)
INTEGER SEGK(4MWCRDS-1)MAPUNKK(MEDGES+MWCRDS)

COMMON/DIMEN/NNODES,NEDGES,NFACES

4 COMMON/DIMWR/NWCRDSNWSEGS

. COMMON/NMBRS/NUNKNS

k COMMON/RWIRE/WR
COMMON/SWIRE/SEG

p COMMON/PLAT1/DATNOD

\ COMMON/PLAT2/NCONN

: COMMON/PLAT3/NBOUND
COMMON/CONST/PLKN,JLTWUO4P X 14PJEJWEO4P X 14PJU
COMMON/MAPUS/MAPUNK
COMMON/MATRX3/CI

v COMMON/MATRX2/CV

COMMON/MATRX1/CZ

Pl o}

COMMON/CDIMEN/JNODES,JEDGES,JFACES

COMMON/CDIMWR/JWCRDS,JWSEGS

COMMON/CNMBRS/JUNKNS

‘ COMMON/CRWIRE/CWR
COMMON/CSWIRE/SEGJ

\ COMMON/CPLAT1/CDATNOD

: COMMON/CPLAT2/JCONN

COMMON/CPLAT3/JBOUND

COMMON/CONST1/KN1,JWU14P,X14PWE X14PLJWE14P X14PWU

COMMON/CMAPUS/MAPUNKJ

COMMON/CMATRX3/CCI

COMMON/CMATRX2/CCV

COMMON/KDIMEN/KNODES,KEDGES,KFACES
COMMON/KDIMWR/K WCRDS K WSEGS
COMMON/KNMBRS/KUNKNS
COMMON/KRWIRE/KWR ;
COMMON/KSWIRE/SEGK
COMMON/KPLAT1/KDATNOD
COMMON/KPLAT2/KCONN
COMMON/KPLAT3/KBOUND
COMMON/KMAPUS/MAPUNKK

- COMMON/KMATRX3/KCl

: COMMON/KMATRX2/KCV

C read the geometry for the COATED perfect conductor

OPEN(FILE="STORAGE' STATUS="0OLD’,UNIT=55FORM="UNFORMATTED")
- CALL HFILE(MNODESMEDGESMFACESMWCRDSMUNKNS,STATE)
. CLOSE(55)
IF (STATE.NE.O) THEN
WRITE(6,101)
STOP




Appendix D. EFIE2PC Computer Program

ENDIF
C
C read the geometry for the EXPOSED perfect conductor
C
OPEN(FILE=KSTORAGE’,STATUS='0OLD’,UNIT=54,FORM="UNFORMATTED’)
CALL HFILEK(MNODESMEDGESMFACESMWCRDSMUNKNS,STATE)
CLOSE(54)
IF (STATENE.O) THEN
WRITE(6,101)
STOP
ENDIF
C
C read the geometry for the coating
C
OPEN(FILE='CSTORAGE’,STATUS="OLD’,UNIT=56, FORM="UNFORMATTED")
CALL HFILEC(MNODESMEDGESMFACESMWCRDSMUNKNS,STATE)
CLOSE(56)
IF (STATENE.O) THEN
WRITE(6,101)
STOP
ENDIF
101 FORMAT(3X,”™* currents have already been computed **)
C
C establish Z-matrix
C

OPEN(FILE='"RESMAT’ STATUS="NEW’,UNIT=57,FORM="UNFORMATTED")
CALL ZINTT(CZ,JUNKNS,JUNKNS)

CALL ZPLPL1(CZJUNKNS,NUNKNS,KUNKNS)
CALL ZINTT(CZ,JUNKNS,JUNKNS)

CALL ZPLPL2(CZJUNKNS)

CALL ZPLPLS(CZJUNKNS)

CALL ZINIT(CZ,JUNKNS,JUNKNS)

CALL ZPLPL6(CZJUNKNS)

CALL SAFE(CZJUNKNS,KUNKNSNUNKNS,1)
CALL ZINIT(CZJUNKNS,KUNKNS)

CALL ZPLPL3(CZJUNKNSKUNKNS)

CALL ZPLPLY(CZJUNKNSKUNKNS)

CALL ZINTT({CZJUNKNS,KUNKNS)

CALL ZPLPL7(CZ,JUNKNS,KUNKNS)

CALL ZPLPL10X(CZJUNKNSKUNKNS)

CALL ZINIT(CZ KUNKNS,KUNKNS)

CALL ZPLPL11(CZKUNKNS)

CALL SAFE(CZJUNKNS,KUNKNS,NUNKNS,2)
CALL ZINIT(CZJUNKNS,NUNKNS)

CALL ZPLPLA(CZJUNKNS,NUNKNS)

CALL ZPLPL13(CZJUNKNS,NUNKNS)

CALL ZINIT(CZ,JJUNKNS,NUNKNS)

CALL ZPLPL8(CZJUNKNS,NUNKNS)

CALL ZPLPL14(CZJUNKNSNUNKNS)

CALL ZINTT(CZNUNKNS,NUNKNS)

CALL ZPLPL16(CZNUNKNS)

CALL SAFE(CZJUNKNSKUNKNS,NUNKNS,3)
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CLOSE(57)
C
STOP
END
C
C read necessary geometry information for COATED perfect conductor
C
SUBROUTINE HFILE(MNODES,MEDGES,MFACESMWCRDS,MUNKNS,STATE)
C

INTEGER ILJSTATE

INTEGER MNODES,MEDGESMFACES,MWCRDS,MUNKNS
INTEGER NNODES,NEDGES,NFACES,;NWCRDS,NUNKNS,NWSEGS
COMPLEX JLCI(1),CV(1)

REAL PLKN,JWUO4PX14PJE

REAL DATNOD(4,1),WR(4,1)

INTEGER NCONN(2,1)NBOUND(6,1),SEG(4,1) MAPUNK(1)

COMMON/DIMEN/NNODES,NEDGES,NFACES
COMMON/DIMWR/NWCRDSNWSEGS
COMMON/NMBRS/NUNKNS
COMMON/RWIRE/WR
COMMON/SWIRE/SEG
COMMON/PLAT1/DATNOD
COMMON/PLAT2/NCONN
COMMON/PLAT3/NBOUND
COMMON/CONST/PLKN,JL,JWUO04P,X14PJE,JWEO4P,X14PJU
COMMON/MAPUS/MAPUNK
COMMON/MATRX3/CI
COMMON/MATRX2/CV

READ(55,ERR=990) STATE
READ(55,ERR=990) NNODES,NEDGES,NFACES,NWCRDS,NWSEGS,NUNKNS

IF (NNODES.GT.MNODES) WRITE(6,91) MNODES

IF (NEDGES.GT.MEDGES) WRITE(6,92) MEDGES

IF (NFACES.GTMFACES) WRITE(6,93) MFACES

IF (NWCRDS.GTMWCRDS) WRITE(6,94) MWCRDS

IF (NUNKNS.GT.MUNKNS) WRITE(6,95) MUNKNS

IF (NNODES.GT.MNODES.ORNEDGES.GT.MEDGES.OR.NFACES.GT MFACES.OR.
+ NWCRDS.GT.MWCRDS.ORNUNKNS.GTMUNKNS) STOP

READ(55,ERR=990) ((WR(I,)),]=1,4)J=1NWCRDS)
READ(55,ERR=990) ((SEG(I,J),]=1,4),J=1NWSEGS)
READ(55ERR=990) ((DATNOD(LJ),I=1,4)J=1 NNODES)
READ(55,ERR=990) ((NCONN(1,)),I=1,2),J=1,NEDGES)
READ(55,ERR=990) ((NBOUND(LJ),I=1,6),J=1 NFACES)
READ(55,ERR=990) PLKN,UJLJWUO4P,X14PJE
READ(55,ERR=990) (MAPUNK(I),]=1,NEDGES)
READ(55,ERR=990) (MAPUNK(I+NEDGES),]=1,NWCRDS)

READ(55,ERR=990) (CV(I),l=1,NUNKNS)
READ(55,ERR=990) (CKI),J=1,NUNKNS)

-------------------------
....................................

- DRI
--------
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C

REWIND 55

RETURN
C
91 FORMAT(/2X,'nodes exceeds dimension of’,]5)
92 FORMAT(/2X,’edges exceeds dimension of’I5)
93 FORMAT(/2X, faces exceeds dimension of’I5)
94 FORMAT(/2X,'wire nodes exceeds dimension of’]5)
95 FORMAT(/2X,'unknowns exceeds dimension of’]5)
99 FORMAT(/2X,”™** unexpected error in read *+)
990 WRITE(6,99)

STOP

C
END
C
C read necessary geometry information for EXPOSED perfect conductor
C

SUBROUTINE HFILEK(MNODESMEDGESMFACESMWCRDSMUNKNS,STATE)

INTEGER LJ,STATE

INTEGER MNODESMEDGESMFACES,MWCRDS,MUNKNS
INTEGER KNODES,KEDGESKFACES, KWCRDS,KUNKNS,KWSEGS
COMPLEX JLKCI(1)KCV(1)

REAL PLKN,JWUO4P,X14PJE

REAL KDATNOD(4,1)KWR(4,1)

INTEGER KCONN(2,1),KBOUNDX6,1),SEGK(4,1) MAPUNKK(1)

C

COMMON/KDIMEN/KNODES KEDGES,KFACES
COMMON/KDIMWR/KWCRDS, KWSEGS
COMMON/KNMBRS/KUNKNS
COMMON/KRWIRE/KWR
COMMON/KSWIRE/SEGK
COMMON/KPLAT1/KDATNOD
COMMON/KPLAT2/KCONN
COMMON/KPLAT3/KBOUND
COMMON/CONST/PLKN,JLTWUO4P X 14PJE, JWEQ4P,X 14PJU
COMMON/KMAPUS/MAPUNKK
COMMON/KMATRX3/KCI
COMMON/KMATRX2/KCV

READ(54,ERR=990) STATE
READ(54,ERR=990) KNODES,KEDGES,KFACES,KWCRDS,KWSEGS,KUNKNS

IF (KNODES.GT.MNODES) WRITE(6,91) MNODES
IF (KEDGES.GTMEDGES) WRITE(6,92) MEDGES
IF (KFACES.GT.MFACES) WRITE(6,93) MFACES
IF (KWCRDS.GTMWCRDS) WRITE(6,94) MWCRDS
IF (KUNKNS.GT.MUNKNS) WRITE(6,95) MUNKNS

IF (KNODES.GT MNODES.ORXKEDGES.GTMEDGES.OR.KFACES.GT.MFACES.OR.

+ KWCRDS.GT.MWCRDS.ORKUNKNS.GT.MUNKNS) STOP
READ(54,ERR=990) ((KWR(LJ)]=1,4)J=1 KWCRDS)

Ll A A SIS RS S0 A0
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READ(54,ERR=990) ((SEGK({IJ)I=1,4)J=1 KWSEGS)
READ(54,ERR=990) ((KDATNOD(I,)),I=1,4),J=1KNODES)
READ(54,ERR=990) ((KCONN(,J),I=1,2)J=1,KEDGES)
READ(54,ERR=990) ((KBOUNIXIJ),I=1,6),J=1 KFACES)
READ(54,ERR=990) PLKN,JIJWUOQ4P,X14PJE
REAIDXS4,ERR=990) (MAPUNKK(D),I=1 KEDGES)
READ(54,ERR=990) (MAPUNKK(I+KEDGES),I=1,KWCRDS)

READ(54,ERR=990) (KCV(D)J=1KUNKNS)
READ(54,ERR=990) (KCI(I),J=1, KUNKNS)

REWIND 54
RETURN

FORMAT(/2X,’nodes exceeds dimension of’,I5)
FORMAT(/2X,'edges exceeds dimension of’IS5)
FORMAT(/2X,faces exceeds dimension of’5)
FORMAT(/2X,'wire nodes exceeds dimension of’I5)
FORMAT(/2X,'unknowns exceeds dimension of’I5)
FORMAT(/2X,*** unexpected error in read ***)
WRITE(6,99)

STOP

END
necessary geometry information for coating

SUBROUTINE HFILEC(MNODESMEDGESMFACESMWCRDS,MUNKNS,STATE)

INTEGER LJ,STATE

INTEGER MNODESMEDGESMFACESMWCRDS,MUNKNS
INTEGER JNODES,JEDGES,JFACESJWCRDS,JUNKNS,JWSEGS
COMPLEX JLCCI(1),CCV(1)

COMPLEX EPSILONMU,KN1JWU14P X14PWE,JWE14P X14PWU
REAL PLKN,JWUO4P.X14PJE

REAL CLAMBDAMUO0OMEGA,EPSLONOJWEO4P,X14PJU,X14PI
REAL CDATNOD(4,1),CWR(4,1)

INTEGER JCONN(2,1),JBOUNIX6,1),SEGJ(4,1) MAPUNKI(1)

COMMON/CDIMEN/JNODES,JEDGESJFACES
COMMON/CDIMWR/TWCRDSJWSEGS
COMMON/CNMBRS/JUNKNS

COMMON/CRWIRE/CWR

COMMON/CSWIRE/SEG]J

COMMON/CPLAT1/CDATNOD

COMMON/CPLAT2/JCONN

COMMON/CPLAT3/JBOUND
COMMON/CONST/PLKNJLTWUO4P X 14PJE,JWE04P X 14PJU
COMMON/CONST1/KN1,JWU14P,X14PWEX14PLJWE14P X14PWU
COMMON/CMAPUS/MAPUNKJ

COMMON/CMATRX3/CCI

COMMON/CMATRX2/CCV
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9]

READ(56,ERR=990) STATE "
READ(56,ERR=990) JNODES,JEDGESJFACES,JWCRDSJWSEGS,JUNKNS

IF (JNODES.GTMNODES) WRITE(6,91) MNODES

IF (JEDGES.GTMEDGES) WRITE(6,92) MEDGES

IF (JFACES.GT.MFACES) WRITE(6,93) MFACES

IF (JWCRDS.GTMWCRDS) WRITE(6,94) MWCRDS

IF (JUNKNS.GT.MUNKNS) WRITE(6,95) MUNKNS

IF (JNODES.GTMNODES.ORJEDGES.GTMEDGES.OR.JFACES.GTMFACES.OR.
+ JWCRDS.GT.MWCRDS.ORJUNKNS.GT.MUNKNS) STOP

-

READ(56,EFRR=990) ((CWR(,)),I=1,4),J=1,JWCRDS) .
READ(56,ERR=990) ((SEGJ(1,J),J=1,4),J=1JWSEGS)
READ(56,ERR=990) ((CDATNOD(1,J),I=1,4),J=1JNODES)
READ(56,ERR=990) ((JOCONN(L,)),I=1,2),J=1JEDGES)
READX56,ERR=990) ((JBOUND(1,J),J=1,6)J=1JFACES)
READ(56,ERR=990) PLKN,JLTWUO4P X14PJE
READ(56,ERR=990) (MAPUNKJ(D),I=1JEDGES)
READ(56,ERR=990) (MAPUNKJ(I+JEDGES),I=1,JWCRDS)

Q

READX(S56,ERR=990) (CCV(D),I=1,JUNKNS)
READ(56,ERR=990) (CCI(I),J=1,JUNKNS)

REWIND 56 '

calculate constants

aaa G

TYPE *’ENTER RELATIVE EPS & MU OF COATING: EPS(REM)MU(REM)
READ(**) EPSILONMU
TYPE *'EPSILON RELATIVE="EPSILON
TYPE *'MU RELATIVE="MU
Pl= 3.1415926535897932
C= 299792456
LAMBDA= 1.0
MUO= 4*PI*1D-7 .
TYPE *'MUO="MUO .
KN= 2*PI/LAMBDA
TYPE *’KN='KN
OMEGA= KN*C
TYPE *'OMEGA=",OMEGA
EPSLONO= 1/(MUO*C**2)
TYPE *’EPSLONO=’EPSLONO
MU= MU*MUO
TYPE *’MU=’MU
EPSILON= EPSILON*EPSLONO
TYPE * EPSILON="EPSILON
TWUO04P= OMEGA*MUO/(4*PI)
TYPE *’TWUO4P=’ JWUO4P
X14PJE= -1/(4*PI*OMEGA*EPSLONO)
TYPE *’X14PJE='X14PJE
JI= CMPLX(0,-1)

- e s
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TYPE *J1="J1
JWEO4P= OMEGA*EPSLONO/(4*PD
TYPE *’JWEO4P="JWEO4P
X14PJU= -1/(4*PI*OMEGA*MUO)
TYPE *’X14PJU="X14PJU
KN1= OMEGA*SQRT(MU*EPSILON)
TYPE *’KN1="KN1
TWU14P= OMEGA*MU/(4*P])
TYPE *’JWU14P="JTWU14P
X14PWE= -1/(4*PI*OMEGA*EPSILON)
TYPE *'X14PWE~="'X14PWE
X14Pl= 1/(4*PI)
TYPE *’X14PI="X14PI

roe w e ow oW o~ gt

. JWE14P= OMEGA*EPSILON/(4*PI)
- TYPE *'JWE14P='JWE14P
o X14PWU= -1/(4*PI*OMEGA*MU)
b TYPE *'X14PWU="X14PWU
r. C

RETURN
] C

91 FORMAT(/2X,'nodes exceeds dimension ofI5)
92 FORMAT(/2X,edges exceeds dimension of’I5)
93 FORMAT(/2X,faces exceeds dimension of’,]5)
94 FORMAT(/2X,wire nodes exceeds dimension of’J5)
95 FORMAT(/2X,’'unknowns exceeds dimension of’,]5)
99 FORMAT(/2X,”™* unexpected error in read **)
990 WRITE(6,99)

STOP

END

Z-MATRIX contributions

init ¢z matrix

aaaaaan

SUBROUTINE ZINIT(CZ JUNKNS,NUNKNS)
INTEGER JUNKNSNUNKNS

COMPLEX CZ(JUNKNS,NUNKNS)

2 DO 2001 I=1JUNKNS
Mo 2001 J=1NUNKNS
- CZAJ)=0
: 2000  CONTINUE
- RETURN
END
. C
. C plate - plate coupling
: C
a SUBROUTINE ZPLPL1(CZJUNKNSNUNKNSKUNKNS)
C

INTEGER JUNKNSNUNKNSKUNKNS
COMPLEX JLAJPSGNPOT

CE AL,
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COMPLEX CVEC,CXSLCETA,CPHLA1(3),CDOT
COMPLEX CVEC1,CXSI1,CETA1,CPHI1,A2(3)

COMPLEX CZ(JUNKNS,JUNKNS),CX1,CF,CFX

COMPLEX KN1,JJWU14PX14PWEJWE14P,X14PWU
REAL PLKN,JWUO4PX14PJE,JWE04P X14PJU,X14PI
REAL MAGNLGTAREA,AREA1IN,VDOT,AREA 1M, TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),LIN(3)

REAL R11M(3,3)R1IM(3),RCIM(3),RHOIM(3),R11N(3,3)
REAL XSI(7),ETA(7),WGHT(7)

INTEGER JNODES,JEDGES,JFACESJWCRDS,JWSEGS
INTEGER LJKM(2)MOM1,N(2)NO,N1,MAP1,EIM(3),EIN(3),ISGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/CDIMEN/JNODES JEDGESJFACES
COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONST/PLKN,JLTWUO04P,X14PJE,JWE04P,X14PJU
COMMON/CONST1/KN1,JWU14P X14PWE,X14PLJWE14P,X14PWU
COMMON/NUMINT/XSLETA,WGHT

EXTERNAL MAGNLGTAREA,VDOTMAP1
EXTERNAL SGNPOT,ISGN,CDOT
C
C source triangles
C
DO 2005 NO=1JFACES
CALL VTXCRD1(NOR11N)
AREAIN = GTAREA(R1IN,PLATE)
CALL LENGTH(R1IN,LIN)
CALL FACEDG1(NO,E1N(1),EIN(2),EIN(3))
C
C observation triangles
C
DO 2004 MO=1,JFACES
CALL VTXCRD1(MOR11M)
AREAIM = GTAREA(R11M,PLATE)
CALL CENTER(R11M,RCIM,PLATE)
CALL LENGTH(R1IM,L1M)
CALL FACEDG1(MO,E1M(1)E1M(2),E1M(3))
C
C compute integrals
C

CALL NINT7(R11N,RCIM,CVEC,CXSLCETA,POT,CPHI,RLN1,RO1,AREAIN,DR)
CALL NINT7A(R11N,RCIM,CVEC1,CXSI1,CETA1,POT,CPHI1,
+ RLN1,RO1,AREAIN,DR)

DO 2003 N1=1,PLATE

N(1) = MAP1(NON1,PLATE)

N(2) = MAP1(NON1+PLATEPLATE)
IF (N(1)NE.O.ORN(2)NE.0O) THEN

...........................................................
''''''''''''''''''''''''''''''
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P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * JI * X14PJE * CPHI +
+ ISGN(EIN(N1)) * LIN(N1)/AREAIN * JI * X14PWE * CPHI1
DO 2001 I=1,3
A1(D = ( R1IN(I,1) - R1IN(N1) ) * CVEC +
+ ( R1I1IN(I2) - R1IN(L,1) ) * CXSI +
+ ( R1IN(,3) - R1IN(L,1) ) * CETA +
+ ( RO1(D - R1IN(IN1) ) * POT + RLN1(D
A2(D) = ( R1IN(I,1) - R1IN(IN1) ) * CVEC1 +
+ ( R1IN(1,2) - R1IN(,1) ) * CXSI1 +
+ ( R1IN(,3) - R1IN(I,1) ) * CETA1 +
+ ( RO1(D) - R1IN(N1) ) * POT + RLN1(D
A1(I) = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1N) * A1(D)
A2(I) = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1N) * A2(D)
CONTINUE

DO 2002 M1=1PLATE
M) = MAP1(MOM1,PLATE)
M(2) = MAP1(MOM1+PLATEPLATE)
IF (M(1)NE.O.ORM(2)NE.0) THEN
CALL P1RHOR11IMM1,RHO1M)
A = JI * JWUO4P * CDOT(RHOIM,A1) +
+ JI * TWU14P * CDOT(RHO1M,A2)
CX1 = ISGN(EIMMDX*L1IMM1XA+P)

IF (DRLT.LIM(1).ORDR.LT.LIM(2).0RDRLT.LIM(3)) THEN

the 7-pt integration over the observation triangle

CF =0
CFX = 0
DO 2051 I=1,7
DO 2050 Ji=1,3
RIM(JJ) = R11M(@JJ,1) + (R11M(JJ2)-R1IMQT,1)*XSIAD) +
+ (R11M(U7,3)-R11IMUIT,1)*ETAD
RHOIM(JJ) = RIMUI-R11MUJIM1)
CONTINUE
CALL NINT7(R11N,RIM,CVEC,CXSLCETA,POT,CPHI,RLN1,RO1,ARFA IN,TRASH)
CALL NINT7A(R11N,RIM,CVEC1,CXSI1,CETA1,POT,CPHI1,
+ RLN1,RO1,AREAIN,TRASH)
P = ISGN(EIN(N1)) * LIN(N1)/AREA1N * JI * X14PJE * CPHI +
+ ISGN(EIN(N1)) * LIN(N1)/AREAIN * JI * X14PWE * CPHI1
DO 2049 I=1,3
A1() = ( R1IN(,1) - R1IN(IN1) ) * CVEC +
( R11IN(I2) - R1IN(I,1) ) * CXSI +
( R1IN(,3) - R1IN(L,1) ) * CETA +
( ROI(I) - R1IN(ILN1) ) * POT + RLN1(D
A2(I) = ( R1IN(L,1) - R11IN(IN1) ) * CVEC1 +
( R1IN(2) - R1IN(L,1) ) * CXSI1 +
( R1IN(3) - R1IN(L,1) ) * CETA1 +
( RO1(D - R1IN(ILN1) ) * POT + RLN1(D
A1() = ISGN(EIN(N1)) * LIN(N1)/(4*AREAIN) * A1(D)
A2(I) = ISGN(EIN(N1)) * LIN(N1)/(4*AREAIN) * A2(D)

+ + +

+ + +
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2049 CONTINUE
A = JI * JWUO4P * CDOT(RHOIM,AL) +
+ JI * JWU14P * CDOT(RHO1IM,A2)
CFX = ISGN(EIM(MM1)PL1IM(M1)/AREAIM*A+P)
CF = CF + CFX*WGHT(D
2051 CONTINUE
CX1 = CF * AREAIM
C
ENDIF
C
DO 3001 J=122
DO 3001 K=1,2
IF (M(K)NE.O.ANDN(J)NE.O) THEN
IFIM(K)NEN(@)) THEN
CZIMKINQ)) = CZIMKN(Q)) + SGNPOT(CX1,J,K)/2
CZINOOM(K)) = CZINODM(K)) + SGNPOT(CX1,J,K)/2

ELSE
CZMEKINQD)) = CZIMKINQ)) + SGNPOT(CX1,JK)
ENDIF
ENDIF
3001 CONTINUE
ENDIF
2002 CONTINUE
ENDIF
2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
C
C R
WRITE(57) 2*JUNKNS+NUNKNS+KUNKNS,0
DO 147 J=1JUNKNS
147 WRITE(S7XCZ(1])J=1,3)

C *rrockreciik

C
TYPE *’ CZ1 COMPLETED’
Cc
RETURN
END
C
SUBROUTINE ZPLPL2(CZ,JUNKNS)
C

INTEGER JUNKNS

COMPLEX JLA,P,SGNPOT

COMPLEX CVECKO,CXSIKO,CETAKO0,A1(3),A3(3),CDOT
COMPLEX CVECK1,CXSIK1,CETAK1,A2(3),A4(3)
COMPLEX CZ(JUNKNS,JUNKNS),CX2,CF,CFX
COMPLEX KN1JWU14P X14PWE,JWE14P X14PWU
REAL PLKN,JWUOQ4P X14PJEJWEO4P,X14PJU X14PI
REAL MAGNILGTAREA,AREAIN,VDOT,AREA 1M, TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),L1N(3)

REAL R11M(3,3)R1M(3),RCIM(3),RHO1M(3),R11N(3,3)
REAL RI(3),RIMRCM(3),RCMXRI(3)

S ek at 2loe]
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REAL XSK7)ETA(7),WGHT(7)
INTEGER JNODESJEDGES,JFACESJWCRDS,JWSEGS
INTEGER LJKM(2)MOM1,N(2)NON1,MAP1EIM(3),EIN(3)JSGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/CDIMEN/JNODES,JEDGES,JFACES
COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONST/PLKN,JLYWUO04P,X14PJE,JWE04P,X14PJU
COMMON/CONST1/KN1,JWU14P X14PWE,X14PLTWE14P,X14PWU
COMMON/NUMINT/XSLETA,WGHT

EXTERNAL MAGNLGTAREA,VDOTMAP1
EXTERNAL SGNPOT,ISGN,CDOT

C source triangles

Cc

C

DO 2005 NO=1,JFACES
CALL VTXCRDI1(NOR11N)
AREAIN = GTAREA(R11IN,PLATE)
CALL LENGTH(R1IN,LIN)
CALL FACEDG1(NO,EIN(1),E1IN(2),EIN(3))

C observation triangles

C

C

DO 2004 MO=1JFACES

CALL VTXCRD1(MO,R11M)

AREAIM = GTAREA(R11M,PLATE)

CALL CENTER(R11M,RCIM,PLATE)

CALL LENGTH(R1IM,LIM)

CALL FACEDG1(MO,E1IM(1),E1M(2).E1M(3))

C compute integrals
Cc

IF(OMO.EQ.NO) THEN
CVECKO = 0
CXSIKO = 0
CETAKO = 0
CVECK1 = 0
CXSIK1 = 0
CETAK1 = 0
ELSE
CALL NINT7B(R11N,RCIM,CVECKO,CXSIKO,CETAKO,AREA 1N,DR)

CALL NINT7C(R11N,RCIM,CVECK1,CXSIK1,CETAK1,AREA1N,DR)
ENDIF

DO 2003 N1=1PLATE

N(1) = MAP1(NON1,PLATE)

N(2) = MAP1(NON1+PLATEPLATE)
IF (N(1)NE.O.OR.N(2).NE.O) THEN

163
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Pt
Fald

DO 2001 I=1,3
A1(D = R11N(L1) * CVECKO +
+ ( R1IN(I2) - R1IN(L,1) ) * CXSIKO +
+ ( R11IN(L3) - R1IN(1,1) ) * CETAKO
A2() = R11IN(,1) * CVECK1 +
+  ( R1IN(1,2) - R1IN(L1) ) * CXSIK1 +
S + ( R11IN(,3) - R11IN(L,1) ) * CETAK1
K RI() = R1IN(IN1)
RIMRCM(D = RI(D - RCIM(D
2001 CONTINUE
CALL CROSS2(RCIM,RLRCMXRI)
CALL CROSS3(RIMRCM,A1,A3)
CALL CROSS3(RIMRCM,A2,A4)
DO 2025 I=1,3
A1(D = A3(D) + RCMXRI() * CVECKO
A2(D = A4(I) + RCMXRI(I) * CVECK1
A1(D = ISGN(EIN(N1)) * LIN(N1)/(2*AREAIN) * A1()
A2(D = ISGN(EIN(N1)) * LIN(N1)/(2*AREAIN) * A2(I)
\ 2025 CONTINUE

v~
AP

Lot o0 s

DO 2002 M1=1,PLATE
M(1) = MAP1(MOM1,PLATE)
: M(2) = MAP1(MOMI1+PLATEPLATE)
2 IF (M(1).NE.O.ORM(2)NE.0) THEN
y CALL P1RHO(R11IMMLRHO1M)
: A = X14PI * ( CDOT(RHOIM,A1) + CDOT(RHO1IM,A2) )
: CX2 = ISGN(EIM(M1)) * L1IM(M1) * A

IF (DRLTLIM(1).ORDRLT.LIM(2).ORDRLTLIM(3)) THEN

do the 7-pt integration over the observation triangle

aaan Q

a e a8 &

CF =0
CFX = 0
DO 2051 @I=1,7
DO 2050 JJ=1,3
RIM(J) = R11M(JJ,1) + (R11MUJI2)}-R1IMUT,DPFXSIAD +
+ (R11M(©37,3)-R11IMUJ,1)DPETAD
RHOIM(J)) = RIMQJI)-R11M(JIM1)
2050 CONTINUE
IF(MO.EQ.NO) THEN
. CVECKO = 0
; CXSIKO = 0
CETAKO = 0
CVECK1 = 0
CXSIK1 = 0
CETAK1 = 0
ELSE
CALL NINT7B(R11N,R1M,CVECKO,CXSIKO,CETAKO,AREA 1N,TRASH)

CALL NINT7C(R11NR1M,CVECK1,CXSIK1,CETAK1,AREAIN,TRASH)
ENDIF

DO 2049 I=1,3
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A1(D = R1IN(I,1) * CVECKO +
( R11IN(1,2) - R1IN(,1) ) * CXSIKO +
( R11N(1,3) - R11IN(,1) ) * CETAKO
A2() = R1IN(I,1) * CVECK1 +
( R1IN(,2) - R1IN(L,1) ) * CXSIK1 +
( R1I1N(,3) - R11N(,1) ) * CETAK1
RI(D = R1IN(N1)
RIMRCM(D = RI(D - R1IM(D)
CONTINUE
CALL CROSS2(RIM,RL,RCMXRD
CALL CROSS3(RIMRCM,A1,A3)
CALL CROSS3(RIMRCM,A2,A4)
DO 2048 I=1,3
A1(D) = A3(I) + RCMXRI(I) * CVECKO
A2(I) = A4(D) + RCMXRI(D) * CVECK1
A1() = ISGN(EIN(N1)) * LIN(N1)/(4*AREAIN) * A1(D
A2(I) = ISGN(EIN(N1)) * LIN(N1)/(4*AREA1IN) * A2(D
CONTINUE
A = X14PI * ( CDOT(RHOIM,A1) + CDOT(RHOIM,A2) )
CFX = ISGN(EIM(M1)) * LIM(M1)/AREAIM * A
CF = CF + CFX*WGHT(I)
CONTINUE
CX2 = CF * AREAIM

ENDIF

DO 3001 J=12
DO 3001 K=1,2
IF (M(K).NE.O.ANDN(J)NE.O) THEN
CZMK)IN) = CZIMXKIND) + SGNPOT(CX2,JK)/2

SUBROUTINE ZPLPL3(CZJUNKNS,KUNKNS)

INTEGER JUNKNS,KUNKNS

COMPLEX JLA,P,SGNPOT

COMPLEX CVEC,CXSLCETA,CPHLA1(3),CDOT
COMPLEX CZ(JUNKNS,KUNKNS),CX3,CF,CFX
COMPLEX KN1,JWU14PX14PWEJWE14P X14PWU
REAL PLKN,JWUO4PX14PJE,JWEO4P X14PJU X14PI
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REAL MAGNLGTAREA,AREA1IN,VDOT,AREAIM,TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),LIN(3)

REAL R11M(3,3),R1M(3),RCIM(3),RHOIM(3),R11N(3,3)
REAL XSI(7),ETA(7),WGHT(7)

INTEGER KNODES,KEDGES,KFACES,KWCRDS,KWSEGS
INTEGER JNODES,JEDGES,JFACESJWCRDSJWSEGS
INTEGER LJK,M(2),MOM1,N(2),NON1MAP1MAP2
INTEGER E1M(3)E1IN(3)ISGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/KDIMEN/KNODES,KEDGES, KFACES
COMMON/KDIMWR/KWCRDS,KWSEGS
COMMON/CDIMEN/INODESJEDGES,JFACES
COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONST/PLKN,JLTWUOQ4P,X 14PJE JWE04P,X 14PJU
COMMON/CONST1/KN1,JWU14P X 14PWE,X14PLTWE14P,X14PWU
COMMON/NUMINT/XSLETA,WGHT
(o
EXTERNAL MAGNIGTAREA,VDOTMAP1MAP2
EXTERNAL SGNPOT,ISGN,CDOT
Cc
C source triangles
Cc
DO 2005 NO=1,KFACES
CALL VTXCRD2(NOR11N)
AREAIN = GTAREA(R1IN,PLATE)
CALL LENGTH(R1IN,LIN)
CALL FACEDG2(NO,EIN(1),EIN(2),EIN(3))
C
C observation triangles
(o
DO 2004 MO=1,JFACES
CALL VTXCRD1(MO,R11M)
AREAIM = GTAREA(R11M,PLATE)
CALL CENTER(R11M,RCIM,PLATE)
CALL LENGTH(R11IM,L1M)
CALL FACEDG1(MO,EIM(1),EIM(2).EIM(3))
C
C compute integrals
C

CALL NINT7(R11N,RCIM,CVEC,CXSLCETA,POT,CPHI,
+ RLN1,RO1,AREAIN,DR)

DO 2003 N1=1PLATE

N(1) = MAP2(NON1,PLATE)

NQ2) = MAP2(NON1+PLATE,PLATE)

IF (N(1).NE.O.ORN(2)NE.0) THEN

P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * JI * X14PJE * CPHI

DO 2001 I=1,3
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A1(D = ( R1IN(I,1) - R1IN(I)N1) ) * CVEC +
5 +  ( R1IN(,2) - R1IN(L,1) ) * CXSI +
+  (R1IN(L3) - R1IN(L1) ) * CETA +
+ ( RO1(D) - R1IN(ILN1) ) * POT + RLN1(D
' A1(I) = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1N) * A1(D
‘ 2001 CONTINUE
! C
X DO 2002 M1=1PLATE
M(1) = MAP1(MOM1,PLATE)
M(2) = MAP1(MOM1+PLATEPLATE)
3 IF (M(1).NE.O.ORM(2)NE.0O) THEN
CALL P1RHO(R11MM1,RHOIM)
A = JI * JWUO04P * CDOT(RHOIM,A1)
CX3 = ISGNEIMMDILIMM1XA+P)

IF (DRLTLIM(1).ORDRLT.L1IM(2).0RDRLT.LIM(3)) THEN

aaa o

do the 7-pt integration over the observation triangle

CEF =0
CFX = 0
DO 2051 I=1,7
DO 2050 JJ=1,3
RIM(D) = R11MQJ,1) + (R1IMQUI2)»R1IMUT,1DPXSIAD +
+ (R11M(@37,3)-R11IMUJ,1)DPFETAD
. RHOIMQ)J) = RIMUI-R11IMUJIM1)
8 2050 CONTINUE
CALL NINT7(R11N,R1M,CVEC,CXSLCETA,POT,CPHI,
. + RLN1,R01,AREA IN,TRASH)
\ P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * JI * X14PJE * CPHI
DO 2049 I=1,3
A1(D = ( R1IN(I,1) - R1IN(IN1) ) * CVEC +

+ ( R1IN(2) - R1IN(L,1) ) * CXSI +
+ ( R11IN(1,3) - R11IN(1,1) ) * CETA +
+ ( ROI(D) - R1IN(ILN1) ) * POT + RLN1({)

A1(I) = ISGN(EIN(N1)) * L1N(N1)/(4*AREAIN) * A1(D)
2049 CONTINUE
A = JI * JWUO4P * CDOT(RHOIM,A1)
CFX = ISGN(EIM(M1)*L1M(M1)/AREAIM*A+P)
CF = CF + CFX*WGHT(I)
2051 CONTINUE
CX3 = CF * AREAIM

b st ae & e

C
ENDIF
C
DO 3001 J=1,2
DO 3001 K=12
- IF M(K)NE.O.ANDN(J)NE.O) THEN
X CZMIKINQ)) = CZIM(K)N()) + SGNPOT(CX3,J.K)/2 \
ENDIF ‘
' 3001 CONTINUE

ENDIF

s 8 8 & &
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CONTINUE
ENDIF
CONTINUE
CONTINUE
CONTINUE

TYPE *’ CZ3 COMPLETED’

RETURN
END

SUBROUTINE ZPLPLA(CZ,JUNKNS,NUNKNS)

INTEGER JUNKNS,NUNKNS

COMPLEX JLA,P,SGNPOT

COMPLEX CVEC1,CXSI1,CETA1,CPHI1,A2(3),CDOT
COMPLEX CZ(JUNKNS,NUNKNS),CX4,CF,CFX
COMPLEX KN1,JWU14PX14PWEJWE14PX14PWU
REAL PLKN,JWUO4P,X14PJE,JWEO4P,X14PJU,X14P]
REAL MAGNILGTAREA,AREA1N,VDOT,AREA 1M, TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),L1N(3)

REAL R11M(3,3),R1M(3),RC1IM(3),RHO1M(3),R11N(3,3)
REAL XSI(7),ETA(7),WGHT(7)

INTEGER NNODES,NEDGES,NFACES,NWCRDS,NWSEGS
INTEGER JNODESJEDGES,JFACES,JWCRDS,JWSEGS
INTEGER LJXM(2)MOM1N(2)NO,N1,MAPMAP1
INTEGER E1M(3),EIN(3)ISGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/DIMEN/NNODES,NEDGES,NFACES
COMMON/DIMWR/NWCRDS,NWSEGS
COMMON/CDIMEN/JNODES,JEDGES,JFACES
COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONST/PLKN,JILTWUO4P X 14PJE,JWE04P X 14PJU
COMMON/CONST1/KN1,JWU14P,X14PWE,X14PLTWE14P X14PWU
COMMON/NUMINT/XSLETA,WGHT

C
EXTERNAL MAGNIGTAREA,VDOTMAPMAP1
EXTERNAL SGNPOT,ISGN,CDOT
(o
C source triangles
C
DO 2005 NO=1,NFACES
CALL VTXCRD(NO,R11N)
AREAIN = GTAREA(R1IN,PLATE)
CALL LENGTH(R1IN,LIN)
CALL FACEDG(NO,E1N(1),EIN(2),E1IN(3))
C
C observation triangles
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DO 2004 MO=1JFACES
CALL VTXCRD1(MO,R11M)
ARFAIM = GTAREA(R11M,PLATE)
CALL CENTER(R11IM,RCIM,PLATE)
CALL LENGTH(R11M,L1M)
CALL FACEDG1(MO,EIM(1),E1IM(2)EI1M(3))
o

C compute integrals
C

CALL NINT7A(R11N,RCIM,CVEC1,CXSI1,CETA1,POT,CPHI1,
+ RLN1,RO1,AREA IN,DR)

DO 2003 N1=1PLATE
N(1) = MAP(NO,N1,PLATE)
N(2) = MAP(NO,N1+PLATEPLATE)
IF (N(1)NE.O.ORN(2)NE.O) THEN
P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * (-JI) * X14PWE * CPHI1
DO 2001 I=1,3
A2(D = ( R1IN(I,1) - R1IN(IN1) ) * CVEC1 +
( R11IN(2) - R1IN(L,1) ) * CXSI1 +
( R11IN(1,3) - R1IN(I,1) ) * CETA1 +
( RO1(I) - R1IN(IN1) ) * POT + RLN1(D)
A2(D) = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1IN) * A2(D
2001 CONTINUE

++ +

DO 2002 Mi1=1,PLATE
M(1) = MAP1(MOM1,PLATE)
M(2) = MAP1(MOM1+PLATE,PLATE)
IF (M(1)NE.O.ORM(2)NEO) THEN
CALL P1RHO(R11MM1,RHOIM)
A = -JI * JWU14P * CDOT(RHOIM,A2)
CX4 = ISGN(EIMM1DPLIMM1)XA+P)

IF (DRLTLIM(1).ORDR.LT.LIM(2).ORDRLTLIM(3)) THEN

do the 7-pt integration over the observation triangle

Qo QO

CF =0
CFX = 0
DO 2051 II=1,7
DO 2050 JJ=1,3
RIM(JJ) = R11M(QJJ,1) + (R11IMQJJ2)-R1IMUT,1)*XSI(D) +
+ (R11M(J3,3)-R11MUJ, )DPETA(ID)
RHOIM(J]) = RIMQUI)-R11M(JIM1)
2050 CONTINUE
CALL NINT7A(R11N,RIM,CVEC1,CXSI1,CETA1,POT,CPHI1,
+ RLN1,RO1,AREA IN,TRASH)
P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * (-JI) * X14PWE * CPHI1
DO 2049 1=1,3
A2(D = ( R1IN(I,1) - R1IN(IN1) ) * CVEC1 +
+ ( R11N(1,2) - R1IN(L,1) ) * CXSI1 +

169




2049

2051

2002

2003
2004
2005

Appendix D. EFIE2PC Computer Program

+ ( R1IN(1,3) - R1IN(1,1) ) * CETA1 +
+ ( RO1(D - R1IN(IN1) ) * POT + RLN1(D
A2(D) = ISGN(EIN(N1)) * L1IN(N1)/(4*AREA1N) * A2(D)
CONTINUE
A = -JI * JWU14P * CDOT(RHOIM,A2)
CFX = ISGN(EIM(M1)PL1M(M1)/AREAIMXA+P)
CF = CF + CFX*WGHT(UD
CONTINUE
CX4 = CF * AREAIM

ENDIF

DO 3001 J=1,2
DO 3001 K=12
IF (M(K)NE.O.ANDN(J))NEO) THEN
CZIMKINQ) = CZMK)IN(Q)) + SGNPOT(CX4,JK)/2
ENDIF
CONTINUE
ENDIF
CONTINUE
ENDIF
CONTINUE
CONTINUE
CONTINUE

TYPE *’ CZ4 COMPLETED’

RETURN
END

SUBROUTINE ZPLPLS(CZ,JUNKNS)

INTEGER JUNKNS

COMPLEX JIA,P,.SGNPOT

COMPLEX CVECKO,CXSIKO,CETAKO,A1(3),A3(3),CDOT
COMPLEX CVECK1,CXSIK1,CETAK1,A2(3),A4(3)
COMPLEX CZ(JUNKNS,JUNKNS),CX5,CF,CFX

COMPLEX KN1,JWU14PX14PWE,JWE14P,X14PWU
REAL PLKN,JWUO4P X14PJEJWEO4P X14PJU X14PI
REAL MAGNIGTAREA,AREAIN,VDOT,AREA1IM,TRASH
REAL DR,POT,RLN1(3)R01(3),L1M(3),L1N(3)

REAL R11M(3,3),R1M(3),RCIM(3),RHOIM(3),R11N(3,3)
REAL RI(3)RIMRCM(3),RCMXRI(3)

REAL XSI(7),ETA(7),WGHT(7)

INTEGER JNODES,JEDGES,JFACES,JWCRDS,JWSEGS
INTEGER LJK,M(2)MOM1,N(2),NO,N1,MAP1,EIM(3),EIN(3),JSGN

INTEGER WIRE,PLATE

PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/CDIMEN/JNODES,JEDGES,JFACES
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COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONST/PLKN,JLTWUO4P,X 14PJE JWEO4P X 14PJU
COMMON/CONST1/KN1,JWU14P,X14PWEX14PLTWE14P X 14PWU
COMMON/NUMINT/XSLETA,WGHT

EXTERNAL MAGNIGTAREA,VDOTMAP1
EXTERNAL SGNPOT.,ISGN,CDOT

C source triangles

C

C

DO 2005 NO=1,JFACES
CALL VTXCRD1(NOR11N)
AREAIN = GTAREA(R1IN,PLATE)
CALL LENGTH(R11N,LIN)
CALL FACEDG1(NO,EIN(1),EIN(2),EIN(3))

C observation triangles

C

Cc

DO 2004 MO=1JFACES

CALL VTXCRD1(MOR11M)

AREAIM = GTAREA(R1IMPLATE)

CALL CENTER(R11IM,RCIM,PLATE)

CALL LENGTH(R11M,L1M)

CALL FACEDG1(MO,E1M(1),E1IM(2),EIM(3))

C compute integrals
C

(T

+ +

+ +

A AT

IF(MO.EQNO) THEN
CVECKO = 0
CXSIKO = 0
CETAKO = 0
CVECK1 = 0
CXSIK1 = 0
CETAK1 = 0
ELSE
CALL NINT7B(R11N,RC1IM,CVECKO,CXSIKO,CETAKO,AREA 1N,DR)

CALL NINT7C(R11N,RCIM,CVECK1,CXSIK1,CETAK1,AREAIN,DR)
ENDIF

DO 2003 N1=1PLATE
N(1) = MAP1(NO,N1,PLATE)
N(2) = MAP1(NO,N1+PLATEPLATE)
IF (N(1)NE.O.ORN(2)NE.0) THEN
DO 2001 I=1,3
A1(I) = R11N(I,1) * CVECKO +
( R1IN(I,2) - R11IN(L,1) ) * CXSIKO +
( R11N(L3) - R1IN(I1) ) * CETAKO
A2(I) = R11N(I,1) * CVECK1 +
( R11N(L2) - R1IN(1,1) ) * CXSIK1 +
( R11N(,3) - R1IN(,1) ) * CETAK1
RII) = R11IN(I,N1)
RIMRCM(®) = RI) - RCIM()

.
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2001 CONTINUE
CALL CROSS2(RCIM,RLRCMXRD
CALL CROSS3(RIMRCM,A1,A3)
CALL CROSS3(RIMRCM,A2,A4)
DO 2025 I=1,3
A1(D = A3(I) + RCMXRI(I) * CVECKO
A2(I) = A4 + RCMXRI() * CVECK1
A1(D) = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1N) * A1(I)
A2(D) = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1N) * A2(D)
2025 CONTINUE

DO 2002 M1=1PLATE

M(1) = MAP1(MOM1,PLATE)

M(Q2) = MAP1(MOM1+PLATE,PLATE)

IF (M(1)NE.O.ORM(2)NE.O) THEN
CALL PIRHO(R11MM1,RHO1M)
A = X14PI * ( CDOT(RHOIM,A1) + CDOT(RHOIM,A2) )
CX5 = ISGN(EIM(M1)) * L1M(M1) * A

IF (DRLT.LIM(1).ORDRLT.LIM(2)ORDRLTL1IM(3)) THEN

do the 7-pt integration over the observation triangle

aaa a

CF =0
CFX = 0
DO 2051 II=1,7
DO 2050 JJ=1,3
RIMUJ) = R1IM(J,1) + (R1IMQUJ,2)}R1IMUT,1)#XSIAT) +
+ (R11M(7,3)-R11IMUJ,1)PETA(D
RHOIM(JJ) = RIMQU)-R11MUIM1)
2050 CONTINUE
IF(MO.EQNO) THEN
CVECKO = 0
CXSIKO = 0
CETAKO = 0
CVECK1 = 0
CXSIK1 = O
CETAK1 = 0
ELSE
CALL NINT7B(R11N,RIM,CVECKO,CXSIKO,CETAKO,AREAIN,TRASH)
CALL NINT7C(R11N,RIM,CVECK1,CXSIK1,CETAK1,AREA1N,TRASH)
ENDIF
DO 2049 I=1,3
A1(I) = R11N(1,1) * CVECKO +
( R1IN(I,2) - R1IN(L1) ) * CXSIKO +
( R11N(1,3) - R11IN(1,1) ) * CETAKO
A2(I) = R1IN(I,1) * CVECK1 +
+ ( R11N(1,2) - R1IN(I,1) ) * CXSIK1 +
+ ( R1IN(L3) - R11N(I,1) ) * CETAK1
RI(D) = R1IN(IN1)
RIMRCM(I) = RID) - R1M(D
2049 CONTINUE

+ +
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CALL CROSS2(R1IM,RLRCMXRD
CALL CROSS3(RIMRCM,A1,A3)
CALL CROSS3(RIMRCM,A2,A4)
DO 2048 I=1,3
A1(D) = A3(D) + RCMXRI(I) * CVECKO
A2(I) = A4() + RCMXRI() * CVECK1
A1(I) = ISGN(EIN(N1)) * LIN(N1)/(4*AREAIN) * A1(D)
A2(D = ISGN(EIN(N1)) * LIN(N1)/(4*AREAIN) * A2(D)
CONTINUE
A = X14PI * ( CDOT(RHOIM,A1) + CDOT(RHOIM,A2) )
CFX = ISGN(EIM(M1)) * LIM(M1)/AREAIM * A
CF = CF + CFX*WGHT(D
CONTINUE
CX5 = CF * AREAIM

ENDIF

DO 3001 J=12
DO 3001 K=1,2
IF (M(K)NEO.ANDN(J)NE.O) THEN
CZINOOM(K)) = CZINDOM(K)) + SGNPOT(CX5,J.K)/2
ENDIF
3001 CONTINUE
ENDIF
2002 CONTINUE
ENDIF
2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
g
OPEN(FILE='CZ2’ STATUS="NEW’,DISPOSE~'DELETE’,
+ UNIT=22,FORM="UNFORMATTED")
DO 147 J=1JUNKNS
147 WRITE(22XCZ(1,3),1=1,JUNKNS)
C ookl ek
C
TYPE *' CZ5 COMPLETED’
C
RETURN
END

SUBROUTINE ZPLPL6(CZ,JUNKNS)

INTEGER JUNKNS

COMPLEX JLA,P,SGNPOT

COMPLEX CVEC,CXSLCETA,CPHIA1(3),CDOT
COMPLEX CVEC1,CXSI1,CETA1,CPHI1,A2(3)

COMPLEX CZ(JUNKNS,JUNKNS),CX6,CF,CFX

COMPLEX KN1,JWU14PX14PWE,JWE14P X14PWU
REAL PLKN,JWUO4P,X14PJEJWEO04P,X14PJU,X14PI
REAL MAGNLGTAREA,AREAIN,VDOT,AREAIM,TRASH
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REAL DR,POT,RLN1(3),R01(3),L1M(3),LIN(3)

REAL R11M(3,3)R1M(3),RCIM(3)RHOIM(3),R11N(3,3)

REAL XSI(7),ETA(7),WGHT(7)

INTEGER JNODES,JEDGESJFACES,JJWCRDS,JWSEGS

INTEGER LJ,KM(2)MO,M1,N(2),NON1 MAP1,EIM(3),EIN(3)JSGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/CDIMEN/JNODES,JEDGES,JFACES
COMMON/CDIMWR/JTWCRDS,JWSEGS
COMMON/CONST/PLKN,JL,TWUO4P X 14PJE,JWEO04P, X 14PJU
COMMON/CONST1/KN1,JWU14P,X14PWE X 14PLYWE14P,X14PWU
COMMON/NUMINT/XSLETA,WGHT
C
EXTERNAL MAGNIGTAREA,VDOTMAP1
EXTERNAL SGNPOT,ISGN,CDOT
C
C source triangles
C
DO 2005 NO=1,JFACES
CALL VTXCRD1(NOR11N)
AREAIN = GTAREA(R11IN,PLATE)
CALL LENGTH(R11N,L1N)
CALL FACEDG1(NO,E1N(1),EIN(2),E1N(3))
C
C observation triangles
C
DO 2004 MO=1JFACES
CALL VTXCRD1(MOR11M)
AREAIM = GTAREA(R11M,PLATE)
CALL CENTER(R11M,RCIM,PLATE)
CALL LENGTH(R11IM,LIM)
CALL FACEDG1(MO,E1M(1),E1M(2),E1M(3))
(o
C compute integrals
C

CALL NINT7(R11N,RCIM,CVEC,CXSLCETA,POT,CPHLRLN1,R01,AREAIN,DR)
CALL NINT7A(R11N,RCIM,CVEC1,CXSI1,CETA1,POT,CPHI1,
+ RLN1,R01,AREA IN,DR)

DO 2003 N1=1PLATE

N(1) = MAP1(NON1,PLATE)

N(2) = MAP1(NO,N1+PLATE,PLATE)

IF (N(1)NE.O.ORN(2)NE.0) THEN

P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * (-J) * X14PJU * CPHI +

+ ISGN(EIN(N1)) * LIN(N1)/AREAIN * (-JI) * X14PWU * CPHI1
DO 2001 I=1,3

A1(D = ( R1IN(,1) - R1IN(N1) ) * CVEC +

( R1IN(1.2) - R1IN(L1) ) * CXSI +

( R1IN(IL3) - R1IN(L,1) ) * CETA +

+ +
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( RO1(D - R1IN(IN1) ) * POT + RLN1(I)

A2() = ( R1IN(I,1) - R1IN(IN1) ) * CVEC1 +

+ ( R11IN(I,2) - R1IN(1,1) ) * CXSI1 +

( R11N(,3) - R1IN(,1) ) * CETA1 +

+ ( RO1(D) - R1IN(IN1) ) * POT + RLNI(D

A1(D) = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1IN) * A1(D
A2(D = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1N) * A2(D)
CONTINUE

+

+

DO 2002 M1=1PLATE

M(1) = MAP1(MOM1,PLATE)

M(2) = MAP1(MOM1+PLATE,PLATE)

IF (M(1).NE.O.ORM(2)NE.0) THEN

CALL P1RHO(R11MM1,RHOIM)

A = -JI * JTWEO04P * CDOT(RHOIM,A1) +
+ (-)1) * JWE14P * CDOT(RHOIM,A2)

CX6 = ISGN(EIM(M1)*L1M(M1(A+P)

IF (DRLTL1M(1).ORDRLT.LIM(2).0RDR.LTLIM(3)) THEN
the 7-pt integration over the observation triangle

CF =0
CFX = 0
DO 2051 I=1,7
DO 2050 JI=1,3
RIMQJ) = R1IMUJ,1) + (R1IMUI2)-R1IMQT,1)*XSIAD +
+ (R11M(33,3)>-R11MUJ,1)PETAUTD)
RHOIM(JJ) = RIMUD-R11MJIM1)
CONTINUE
CALL NINT7(R11N,R1M,CVEC,CXSLCETA,POT,CPHIL,RLN1,RO1,AREA IN,TRASH)
CALL NINT7A(R11N,k1M,CVEC1,CXSI1,CETA1,POT,CPHI1,
+ RLN1,RO1,AREA IN,TRASH)
P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * (-JI) * X14PJU * CPHI +
+ ISGN(EIN(N1)) * LIN(N1)/AREAIN * (-JI) * X14PWU * CPHI1
DO 2049 I=1,3
A1(D = ( R1IN(,1) - R1IN(IN1) ) * CVEC +
( R11IN(1,2) - R1IN(,1) ) * CXSI +
( R1IN(L3) - R1IN(L1) ) * CETA +
+ ( RO1(D - R1IN(IN1) ) * POT + RLN1(D)
A2(D = ( R1IN(,1) - R1IN(IN1) ) * CVEC1 +
+ ( R11IN(,2) - R1IN(,1) ) * CXSI1 +
( R11IN(L3) - R1IN(I,1) ) * CETAl +
+ ( RO1(D - R1IN(IN1) ) * POT + RLN1(D
A1(I) = ISGN(EIN(N1)) * LIN(N1)/(4*AREA1IN) * A1(D)
A2(I) = ISGN(EIN(N1)) * LIN(N1)/(4*AREAIN) * A2(D)
CONTINUE
A = -JI * TWEO4P * CDOT(RHOIM,A1) +
+ (-JI) * TWE14P * CDOT(RHO1M,A2)
CFX = ISGN(EIM(M1»L1M(M1)/AREA1IM*A+P)
CF = CF + CFX*WGHT(I)
CONTINUE

+ +

+
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CX6 = CF * AREAIM
ENDIF

DO 3001 J=12

DO 3001 K=1,2

IF (M(K).NEO.ANDNUJ)NEO) THEN
IFM(K)NENQ))) THEN
CZM(KIN() = CZIMKIN) + SGNPOT(CX6,1K)/2
CZINDM(K)) = CZINO)M(K)) + SGNPOT(CX6,JK)/2

ELSE
CZMMKINQ)) = CZIM(K)NQ)) + SGNPOT(CX6,JK)
ENDIF
ENDIF
CONTINUE
ENDIF
CONTINUE
ENDIF
CONTINUE
CONTINUE
CONTINUE

CW

147

OPEN(FILE="CZ6’ STATUS="NEW’,DISPOSE="DELETE’,

+ UNIT=26,FORM="UNFORMATTED")

DO 147 J=1,JUNKNS
WRITE(26 XCZ(L)),I=1,1)

C*ﬂ**w

C
C

TYPE *’ CZ6 COMPLETED’

RETURN
END

SUBROUTINE ZPLPL7(CZJUNKNS,KUNKNS)

INTEGER JUNKNSKUNKNS

COMPLEX JLA,P,SGNPOT

COMPLEX CVECKO,CXSIKO,CETAKO0,A1(3),A3(3),CDOT
COMPLEX CZ(JUNKNS,KUNKNS),CX7,CF,CFX
COMPLEX KN1,JWU14PX14PWEJWE14P,X14PWU
REAL PLKN,JWUO4P,X14PJE JWEO4P,X14PJU,X14PI
REAL MAGNIGTAREA,AREAIN,VDOT,AREA 1M, TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),LIN(3)

REAL R11M(3,3),R1M(3),RCIM(3),RHOIM(3),R11N(3,3)
REAL RI(3)RIMRCM(3),RCMXRI(3)

REAL XSK7)ETA(7),WGHI(7)

INTEGER KNODESKEDGES,KFACES, KWCRDS,KWSEGS
INTEGER JNODESJEDGES,JFACES,JWCRDSJWSEGS
INTEGER LIXM(2)MOM1N(2)NONI1MAPIMAP2
INTEGER E1M(3),EIN(3),ISGN

176
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INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/KDIMEN/KNODES,KEDGES,KFACES
COMMON/KDIMWR/KWCRDS,KWSEGS
COMMON/CDIMEN/INODES,JEDGES JFACES
COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONST/PLKNJLIWUO4P X14PJEJWEO4P,X 14PJU
COMMON/CONST1/KN1,JWU14P X 14PWEX14PLJTWE14P X14PWU
COMMON/NUMINT/XSLETA,WGHT
' C
: EXTERNAL MAGNLGTAREA,VDOTMAP1,MAP2
y EXTERNAL SGNPOT,ISGN,CDOT
: C
C source triangles
Y C
~ DO 2005 NO=1,KFACES
CALL VTXCRD2(NO,R11N)
AREAIN = GTAREA(R11N,PLATE)
CALL LENGTH(R11N,L1N)
CALL FACEDG2(NO,EIN(1),E1N(2),EIN(3))
C
C observation triangles
C
. DO 2004 MO=1JFACES
CALL VTXCRD1(MOR11M)
AREAIM = GTAREA(R11M,PLATE)
CALL CENTER(R11M,RCIM,PLATE)
: CALL LENGTH(R11IM,L1M)
: CALL FACEDG1(MOEIM(1)E1M(2)EIM(3)

compute integrals

CALL NINT7B(R11N,RCIM,CVECKO,CXSIKO,CETAKO,AREA1N,DR)

Q aaaQ

DO 2003 N1=1PLATE
N(1) = MAP2(NON1,PLATE)
N(2) = MAP2(NON1+PLATEPLATE)
, IF (N(1)NE.O.ORN(2)NE.O) THEN
9 DO 2001 I=1,3
' A1(D) = R11IN(,1) * CVECKO +
+ ( R1I1IN(,2) - R11IN(L1) ) * CXSIKO +
+ ( R11IN(,3) - R1IN(1,1) ) * CETAKO
- RI(D = R1IN(IN1)
Y RIMRCM(I) = RI(A) - RCIM(D)
1 2001 CONTINUE
CALL CROSS2(RC1M,RLRCMXRI)
CALL CROSS3(RIMRCM,A1,A3)
' DO 2025 I=1,3
A1() = A3I) + RCMXRI(I) * CVECKO
A1() = ISGN(EIN(N1)) * LIN(N1)/(2*AREAIN) * A1(I)

i N e
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2025 CONTINUE
Cc
DO 2002 M1=1,PLATE
M(1) = MAP1(MOM1,PLATE)
M(2) = MAP1(MOM1+PLATE,PLATE)
IF (M(1)NE.O.ORM(2)NE.0O) THEN
CALL P1RHO(R11MM1,RHO1M)
A = X14PI * CDOT(RHOIM,A1)
CX7 = ISGN(EIM(M1)) * L1IM(M1) * A

IF (DRLT.LIM(1).ORDRLT.LIM(2).ORDRLT.L1M(3)) THEN

do the 7-pt integration over the observation triangle

Qo O

CF =0
CFX = 0
DO 2051 II=1,7
DO 2050 JJ=1,3
RIMAJ) = R11M(UJ1) + (R11MQJ,2)>-R11MJJI,1D)PXSKID) +
+ (R11M(J1,3)-R11M(JJ,1)*ETAD
RHOIM(J)) = RIMUI-R11MJIM1)
2050 CONTINUE
CALL NINT7B(R11N,R1M,CVECKO,CXSIKO,CETAKO,AREA1N,TRASH)
DO 2049 I=1,3
A1(D = R11IN(I,1) * CVECKO +
+ ( R11N(I,2) - R11IN(I,1) ) * CXSIKO +
+ ( R11N(1,3) - R11N(I,1) ) * CETAKO
RI(D) = RIIN(IN1)
RIMRCM(I) = RI) - RIM()
2049 CONTINUE
CALL CROSS2(R1M,RLRCMXRI)
CALL CROSS3(RIMRCM,A1,A3)
DO 2048 I=1,3
A1(D = A3(I) + RCMXRI(I) * CVECKO )
A1(I) = ISGN(EIN(N1)) * LIN(N1)/(4*AREA1IN) * A1(D)
2048 CONTINUE
A = X14PI * CDOT(RHOIM,A1)
CFX = ISGN(E1IM(M1)) * LIM(M1)/AREAIM * A
CF = CF + CFX*WGHT(I)
2051 CONTINUE
CX7 = CF * AREAIM

ENDIF

DO 3001 J=1,2
DO 3001 K=1,2
IF (M(K).NE.O.AND.N(J)NE.0) THEN
CZMM(KIN()) = CZM(K)NQ)) + SGNPOT(CX7,J.K)/2
ENDIF
3001 CONTINUE
ENDIF
2002 CONTINUE
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ENDIF

2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
C

TYPE *’ CZ7 COMPLETED’
C

RETURN

END

SUBROUTINE ZPLPLS(CZ,JUNKNS,NUNKNS)

INTEGER JUNKNS,NUNKNS

COMPLEX JLA,P,.SGNPOT

CCMPLEX CVECK1,CXSIK1,CETAK1,A2(3),A4(3),CDOT
COMPLEX CZ(JUNKNS,NUNKNS),CX8,CF,CFX
COMPLEX KN1,JWU14PX14PWEJWE14P,X14PWU
REAL PLKN,JWUO4P,X14PJE, JWE04P,X14PJU,X14P]
REAL MAGNILGTAREA,AREA1N,VDOT,AREA 1M, TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),LIN(3)

REAL R11M(3,3).R1M(3),RCIM(3),RHO1M(3),R11N(3,3)
REAL RI(3)RIMRCM(3),RCMXRI(3)

REAL XSK(7),ETA(7),WGHT(7)

INTEGER NNODES,NEDGES,NFACES,NWCRDS,NWSEGS
INTEGER JNODESJEDGES,JFACES,JWCRDS,JWSEGS
INTEGER LJKM(2)MOM1N(2)NON1,MAP,MAP1
INTEGER E1M(3),EIN(3)ISGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/DIMEN/NNODES,NEDGES,NFACES
COMMON/DIMWR/NWCRDS NWSEGS

COMMON/CDIMEN/JNODES JEDGES,JFACES
COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONST/PLKN,JLTWUO4P,X14PJE,JWEO4P X 14PJU
COMMON/CONST1/KN1,JWU14P X14PWEX14PLTWE14P X14PWU
COMMON/NUMINT/XSLETA,WGHT

EXTERNAL MAGNI,GTAREA,VDOTMAPMAP1

EXTERNAL SGNPOT,ISGN,CDOT

C

C source triangles

C
DO 2005 NO=1,NFACES
CALL VTXCRIDXNO,R11N)
AREAIN = GTAREA(R11IN,PLATE)
CALL LENGTH(R11N,L1N)
CALL FACEDG(NO,E1N(1),E1N(2),EIN(3))

C
C observation triangles




Appendix D. EFIE2PC Computer Program 180

\ DO 2004 MO=1,JFACES
B CALL VTXCRD1i(MOR11M)
AREAIM = GTAREA(R11M,PLATE)
. CALL CENTER(R11M,RCIM,PLATE)
CALL LENGTH(R1iM,L1M)
CALL FACEDG1(MO,EIM(1),EIM(2),E1IM(3))

compute integrals

CALL NINT7C(R11N,RCIM,CVECK1,CXSIK1,CETAK1,AREA1IN,DR)

O a0

DO 2003 N1=1PLATE
N(1) = MAP(NON1,PLATE)
N(2) = MAP(NON1+PLATEPLATE)
IF (N(1)NE.O.ORN(2)NE.0) THEN
DO 2001 I=1,3
. A2(D = R11IN(I,1) * CVECK1 +
‘ + ( R1IN(L2) - R1IN(I,1) ) * CXSIK1 +
. +  ( R11IN(1,3) - R1IN(L1) ) * CETAK1
RI(D = R11N(IN1)
RIMRCM() = RI(D) - RCIM()
2001 CONTINUE
CALL CROSS2(RCIM,RLRCMXRI)
CALL CROSS3(RIMRCM,A2,A4)
DO 2025 I=1,3
A2(I) = A4() + RCMXRI(D) * CVECK1
A2(I) = ISGN(EIN(N1)) * LIN(N1)/(2*AREAIN) * A2(I)
2025 CONTINUE

DO 2002 M1=1PLATE
M(1) = MAP1(MOM1,PLATE)
M(2) = MAP1(MOM1+PLATE,PLATE)
IF (M(1)NE.O.ORM(2)NE.0) THEN
CALL P1RHO(R11IMM1,RHO1M)
A = -X14P1 * CDOT(RHOIM,A2)
CX8 = ISGN(EIM(M1)) * L1M(M1) * A

IF (DRLTLIM(1).ORDRLT.LIM(2).ORDRLT.LIM(3)) THEN

aaa o

do the 7-pt integration over the observation triangle

CF =0
CFX = 0
DO 2051 II=1,7
DO 2050 JJ=1,3

RIMQ)) = R11MUJ1) + (R11MUJ,2)}-R11MUJ,1)P*XSIID) +
+ (R11M(JJ,3)-R11M(JJ,1)*ETA(I)

RHOIM(JJ) = RIMUI-R11IMUIM1)

2050 CONTINUE

CALL NINT7C(R11NR1M,CVECK1,CXSIK1,CETAK1,AREA IN,TRASH)
, DO 2049 11,3

——
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A2(D = R11IN(L1) * CVECK1 +

+ ( R1IN(,2) - R11IN(L1) ) * CXSIK1 +
+ ( R11N(1,3) - R11IN(,1) ) * CETAK1

RI(D = R11IN(IN1)

RIMRCM(D = RI(D - RIM(D

CONTINUE
CALL CROSS2(R1M,RLRCMXRI)
CALL CROSS3(RIMRCM,A2,A4)
DO 2048 I=1,3

A2(D) = A4D + RCMXRI() * CVECK1

A2(D) = ISGN(EIN(N1)) * LIN(N1)/(4*AREAIN) * A2(I)
CONTINUE

A = -X14PI * CDOT(RHOIM,A2)

CFX = ISGN(E1M(M1)) * LIM(M1)J/AREAIM * A

CF = CF + CFX*WGHT{D

CONTINUE
CX8 = CF * AREAIM

ENDIF

DO 3001 J=1,2
DO 3001 K=1,2
IF (M(K)NE.O.ANDN(J)NE.0) THEN

CZM(KINQ)) = CZM(KINQ)) + SGNPOT(CX8,JXK)/2
ENDIF

TYPE *’ CZ8 COMPLETED’

RETURN
END

SUBROUTINE ZPLPL(CZJUNKNS,KUNKNS)

INTEGER JUNKNS,KUNKNS

COMPLEX JLA,P,SGNPOT

COMPLEX CVEC,CXSLCETA,CPHLA1(3),CDOT
COMPLEX CZ(JUNKNS,KUNKNS),CX9,CF.CFX
COMPLEX KN1,JWU14PX14PWEJWE14PX14PWU
REAL PLKN,JWUO4P,X14PJEJWEO4P,X14PJU X14PI
REAL MAGNIGTAREA,AREA1N,VDOT,AREA 1M, TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),LIN(3)

REAL R11M(3,3)R1IM(3),RCIM(3),RHOIM(3),R11N(3,3)
REAL XSI(7)ETA(7),WGHI(7)

INTEGER KNODESKEDGESKFACESKWCRDSKWSEGS
INTEGER JNODES,JEDGES,JFACES,JWCRDS,JWSEGS

181
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INTEGER LJKM(2)MOM1N(2)NON1,MAP1MAP2
INTEGER E1M(3),EIN(3),ISGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/KDIMEN/KNODES KEDGES KFACES
COMMON/KDIMWR/KWCRDS, KWSEGS
COMMON/CDIMEN/INODES,JEDGES,JFACES
COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONST/PLKN,JLTWUO4P,X14PJEJWEO4P,X14PJU
COMMON/CONST1/KN1,JWU14P X14PWE,X14PLIWE14P X14PWU
COMMON/NUMINT/XSLETA,WGHT

EXTERNAL MAGNLGTAREA,VDOTMAP1MAP2
EXTERNAL SGNPOT,ISGN,CDOT
Cc
C source triangles
C
DO 2005 NO=1JFACES
CALL VTXCRD1(NO,R11N)
AREAIN = GTAREA(R11IN,PLATE)
CALL LENGTH(R1IN,LIN)
CALL FACEDG1(NO,EIN(1),EIN(2),EIN(3))
(o
C observation triangles
Cc
DO 2004 MO=1XFACES
CALL VTXCRD2(MOR11M)
ARFAIM = GTAREA(R11M,PLATE)
CALL CENTER(R11M,RCIM,PLATE)
CALL LENGTH(R1IM,L1M)
CALL FACEDG2(MO,EIM(1),EIM(2),E1M(3))
C
C compute integrals
C

CALL NINT7(R11N,RCIM,CVEC,CXSLCETA,POT,CPHI,
+ RLN1,RO1,AREA1IN,DR)

DO 2003 N1=1PLATE
N(1) = MAP1(NO,N1,PLATE)
N(2) = MAP1(NON1+PLATEPLATE)
IF (N(1).NE.O.OR.N(2)NE.0O) THEN
P = ISGN(EIN(N1)) * LIN(N1)/AREA1N * JI * X14PJE * CPHI
DO 2001 I=1,3
A1(D = ( R1IN(,1) - R1IN(ON1) ) * CVEC +
( R11N(1,2) - R1IN(,1) ) * CXSI +
( R11IN(L,3) - R1IN(I,1) ) * CETA +
( RO1(D - R1IN(ILN1) ) * POT + RLN1(D)
A1() = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1IN) * A1(I)
2001 CONTINUE
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DO 2002 M1=1PLATE
M(1) = MAP2(MOM1,PLATE)
M(2) = MAP2(MOM1+PLATEPLATE)
IF (M(1)NE.O.ORM(2)NE.O) THEN
CALL P1RHO(R11M,M1,RHO1M)
A = JI * JWUO4P * CDOT(RHOIM,A1)
CX9 = ISGN(EIMM1)P*LIM(M1)*(A+P)

IF (DRLT.LIM(1).ORDRLT.LIM(2).ORDRLT.LIM(3)) THEN
the 7-pt integration over the observation triangle

CF =0
CFX = 0
DO 2051 II=1,7
DO 2050 Ji=1,3
RIM()) = R11M({JJ,1) + (R11M(JJ2)-R1IMUJ,DPXSI(D) +
+ (R11M(J7,3)-R11M(JJ,1)*ETA(D)
RHOIM(J]) = RIMUN-R1IMJIM1)
CONTINUE
CALL NINT7(R11N,RIM,CVEC,CXSLCETA,POT,CPHI,
+ RLN1,RO1,AREAIN,TRASH)
P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * JI * X14PJE * CPHI
DO 2049 I=1,3
A1(D = ( R11IN(L1) - R11N(IN1) ) * CVEC +
+ ( R1IN(1,2) - R11IN(I,1) ) * CXSI +
+ ( R11IN(,3) - R1IN(L,1) ) * CETA +
+ ( RO1(I) - R1IN(IN1) ) * POT + RLN1(D)
A1(D = ISGN(EIN(N1)) * LIN(N1)/(4*AREA1N) * A1(D
CONTINUE
A = JI * JTWUO4P * CDOT(RHOIM,A1)
CFX = ISGN(EIM(M1)*L1M(M1)/AREAIM*(A+P)
CF = CF + CFX*WGHT(I)
CONTINUE
CX9 = CF * ARFAIM

ENDIF

DO 3001 J=12
DO 3001 K=1,2
IF (M(K)NE.O.ANDN(J)NE.O) THEN
CZINOOMK)) = CZINOOM(K)) + SGNPOT(CX9,J.K)/2
ENDIF
CONTINUE
ENDIF
CONTINUE
ENDIF
CONTINUE
CONTINUE
CONTINUE
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C Fokkickkiiks
OPEN(FILE="CZ3’ STATUS~'NEW’,DISPOSE='DELETE’,
” + UNIT=23,FORM="UNFORMATTED")
DO 147 J=1KUNKNS
147  WRITE(23XCZ(1,)),J=1,JUNKNS)
C AopkkickicioRek

Cc

-
-

TYPE *’ CZ9 COMPLETED’

[ .

Cc
RETURN
END

SUBROUTINE ZPLPL1X(CZ JUNKNS,KUNKNS)

\ -
TP M - 4

INTEGER JUNKNS,KUNKNS

COMPLEX JLA,P,SGNPOT

COMPLEX CVECKO,CXSIKO,CETAKO,A1(3),A3(3),CDOT
COMPLEX CZ(JUNKNS,KUNKNS),CX10,CF,CFX
COMPLEX KN1,JWU14PX14PWE,JWE14P,X14PWU
REAL PLKN,JWUO4P X14PJE,JWEO04P,X14PJU X14PI
REAL MAGNIGTAREA,AREAIN,VDOT,AREAIM,TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),LIN(3)

REAL R11M(3,3),R1IM(3),RCIM(3),RHO1M(3),R11N(3,3)
REAL RI(3),RIMRCM(3),RCMXRI(3)

REAL XSK(7)ETA(7),WGHT(7)

INTEGER KNODES,KEDGES,KFACES KWCRDS,KWSEGS
INTEGER JNODES,JEDGES,JFACES,JWCRDSJWSEGS
INTEGER LJKM(2)MOM1,N(2)NON1MAPIMAP2
INTEGER E1M(3),EIN(3),JSGN

Ll Nelligied o

NS PRINI%

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/KDIMEN/KNODES,KEDGES KFACES
COMMON/KDIMWR/KWCRDS,KWSEGS
g COMMON/CDIMEN/JNODES,JEDGES,JFACES
3 COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONST/PLKNJLIWUO4P X 14PJEJWEO04P,X14PJU
COMMON/CONST1/KN1,JWU14P X14PWEX14PLITWE14P X14PWU
COMMON/NUMINT/XSLETA,WGHT
Cc
EXTERNAL MAGNLGTAREA,VDOTMAPI1MAP2
EXTERNAL SGNPOT,ISGN,CDOT

[P s 200 »w

C
C source triangles
C

DO 2005 NO=1,JFACES

CALL VTXCRD1(NO,R11N)

AREAIN = GTAREA(R1IN,PLATE)
CALL LENGTH(R11N,L1IN)

CALL FACEDG1(NO,EIN(1)EIN(2)EIN(3))
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C
C observation triangles
C
DO 2004 MO=1KFACES
CALL VTXCRD2(MO,R11M)
ARFAIM = GTAREA(R11M,PLATE)
CALL CENTER(R11IMRCIM,PLATE)
CALL LENGTH(R11M,L1M)
CALL FACEDG2(MO,E1IM(1),EIM(2),E1M(3))
C

C compute integrals
C

CALL NINT7B(R11N,RCIM,CVECKO,CXSIKO,CETAKO,AREA 1N,DR)
C
DO 2003 N1=1PLATE
N(1) = MAP1(NO,N1,PLATE)
N(2) = MAP1(NO,N1+PLATE,PLATE)
IF (N(1).NE.O.ORN(2).NE.0O) THEN
DO 2001 I=1,3
A1(I) = R11N(,1) * CVECKO +
+ ( R1IN(1,2) - R1IN(L1) ) * CXSIKO +
+ ( R11IN(@,3) - R1IN(1,1) ) * CETAKO
RID) = R11IN(IN1)
RIMRCM(I) = RI(D) - RCIM(D
2001 CONTINUE
CALL CROSS2(RCIM,RLRCMXRI)
CALL CROSS3(RIMRCM,A1,A3)
DO 2025 I=1,3
A1() = A3(I) + RCMXRI() * CVECKO
A1(I) = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1IN) * A1(D)
2025 CONTINUE
DO 2002 M1=1PLATE
M(1) = MAP2(MOM1,PLATE)
M(2) = MAP2(MOM1+PLATE,PLATE)
IF (M(1)NE.O.ORM(2)NE.0) THEN
CALL P1RHO(R11IMM1,RHOIM)
A = X14PI * CDOT(RHOIM,A1)
CX10 = ISGN(EIM(M1)) * L1M(M1) * A

IF (DRLT.LIM(1).ORDRLT.LIM(2).OR.DRLTLIM(3)) THEN

do the 7-pt integration over the observation triangle

aQaaa O

CF =0
CFX = 0
DO 2051 I=1,7
DO 2050 JI=1,3
RIM(JJ) = R11M(@JJ,1) + (R11IMQIJ2)-R1IMUT,1)»*XSI(D) +
+ (R11M(J7,3)}R11IMUJ,1)PETACD)
RHOIM(JJ) = RIMUD-R11MUJIM1)
2050 CONTINUE
CALL NINT7B(R11N,R1M,CVECKO,CXSIKO,CETAKO,AREA IN,TRASH)
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DO 2049 I=1,3
A1() = R11IN(,1) * CVECKO +
+ ( R1I1N(,2) - R1IN(,1) ) * CXSIKO +
+ ( R11N(,3) - R11N(,1) ) * CETAKO
RID) = R11N(IN1)
RIMRCM(D) = RI(D) - RIM(®D)
2049 CONTINUE
CALL CROSS2(R1IM,RI,RCMXRI)
CALL CROSS3(RIMRCM,A1,A3)
DO 2048 I=1,3
A1() = A3(D) + RCMXRI() * CVECKO
A1(D) = ISGN(EIN(N1)) * LIN(N1)/(4*AREAIN) * A1(I)
2048 CONTINUE
A = X14PI * CDOT(RHOIM,A1)
CFX = ISGN(EIM(M1)) * LIM(M1)/AREAIM * A
CF = CF + CFX*WGHI(II)
2051 CONTINUE
CX10 = CF * ARFAIM

C
ENDIF
C
DO 3001 J=1,2
DO 3001 K=1,2
IF (M(K)NE.O.ANDN(J)NEO) THEN
CZINOM(K)) = CZIN(OM(K)) + SGNPOT(CX10,J.K)/2
ENDIF
3001 CONTINUE
ENDIF
2002 CONTINUE
ENDIF

2003 CONTINUE

2004 CONTINUE

2005 CONTINUE

C

C ok
OPEN(FILE="CZ7’ STATUS='NEW’,DISPOSE="DELETE,,
+ UNIT=27,FORM="UNFORMATTED’)
DO 147 J=1KUNKNS

147 WRITE(27XCZ(1,)),J=1,JUNKNS)

Cm

C
TYPE *’ CZ10 COMPLETED’
C
RETURN
END
Cc
SUBROUTINE ZPLPL11(CZKUNKNS)
C

INTEGER KUNKNS

COMPLEX JLA,P,SGNPOT

COMPLEX CVEC,CXSLCETA,CPHLA1(3),CDCT
COMPLEX CZ(KUNKNSXKUNKNS),CX11,CF,CFX

L Ra A'm A s’
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COMPLEX KN1,JWU14PX14PWEJWE14P,X14PWU

REAL PLKNJWUO4P,X14PJE JWEO4P,X14PJU X14PI

REAL MAGNIGTAREA,AREAIN,VDOT,AREAIM,TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),LIN(3)

REAL R11M(3,3),RIM(3),RCIM(3),RHOIM(3),R11N(3,3)

REAL XSI(7),ETA(7),WGHT(7)

INTEGER KNODES,KEDGES,KFACESKWCRDSKWSEGS
INTEGER LJKM(2)MOM1,N(2)NON1,MAP2,EIM(3),EIN(3),ISGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=~2)
PARAMETER (PLATE=3)

o

2 ol

e

P 0¥ B B

COMMON/KDIMEN/KNODES,KEDGES KFACES
COMMON/KDIMWP/KWCRDS,KWSEGS
COMMON/CONST/PLKN,JL,TWUO4P,X 14PJE,JWE04P,X 14PJU
A COMMON/CONST1/KN1,JWU14P,X14PWEX14PLYWE14P X14PWU
COMMON/NUMINT/XSLETA,WGHT

EXTERNAL MAGNILGTAREA,VDOTMAP2
EXTERNAL SGNPOT,JISGN,CDOT

C
» C source triangles
C

DO 2005 NO=1,KFACES
3 CALL VTXCRD2(NO,R11N)
3 AREAIN = GTAREA(R1IN,PLATE)
CALL LENGTH(R11N,L1N)
CALL FACEDG2(NO,EIN(1),EIN(2),EIN(3))

C
C observation triangles
C
DO 2004 MO=1KFACES
CALL VTXCRD2(MO,R11M)
' AREAIM = GTAREA(R11M,PLATE)
CALL CENTER(R11M,RCIM,PLATE)
CALL LENGTH(R11M,L1M)
CALL FACEDG2(MO,EIM(1),E1M(2),E1M(3))
Cc

C compute integrals
C

CALL NINT7(R11N,RCIM,CVEC,CXSLCETA,POT,CPHI,
+ RLN1,R01,AREA1IN,DR)

DO 2003 N1=1PLATE

; N(1) = MAP2(NON1,PLATE)

: N(2) = MAP2(NON1+PLATE,PLATE)

IF (N(1).NE.O.ORN(2)NE.O) THEN

P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * JI * X14PJE * CPHI
DO 2001 I=1,3
A1(D = ( R1IN(L1) - R1IN(IN1) ) * CVEC +

( R1IN(I.2) - R11IN(L1) ) * CXSI +
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+ ( R1IN(,3) - R1IN(I,1) ) * CETA +
+ ( RO1(D - R1IN(IN1) ) * POT + RLNI(D
A1(I) = ISGN(EIN(N1)) * LIN(N1)/(2*AREAIN) * A1(D)
2001 CONTINUE

DO 2002 M1=1PLATE
M(1) = MAP2(MOM1,PLATE)
M) = MAP2(MOM1+PLATEPLATE)
IF (M(1)NE.O.ORM(2)NE.O) THEN
CALL P1RHO(R11MM1,RHO1M)
A = JI * TWUO4P * CDOT(RHOIM,A1)
CX11 = ISGNEEIMMDP*LIMMM1XA+P)

IF (DRLT.LIM(1).ORDRLT.LIM(2).ORDRLT.LIM(3)) THEN

do the 7-pt integration over the observation triangle

aaa O

CF=0
CFX = 0
DO 2051 II=1,7
DO 2050 JJ=1,3
RIM(@)) = R11M@J,1) + (R1IMUJ2)}R1IMUT,DPXSIAD +
+ (R11M(@37,3)-R11IMUJ,1)*ETA(D)
RHOIM(®JJ) = RIMUD-R11IMUJIM1)
2050 CONTINUE
CALL NINT7(R11N,R1IM,CVEC,CXSLCETA,POT,CPHI,
+ RLN1,RO1,AREA IN,TRASH)
P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * JI * X14PJE * CPHI
DO 2049 I=1,3
A1(D) = ( R1IN(,1) - R1IN(IN1) ) * CVEC +
+ ( R1IN(I,2) - R1IN(L1) ) * CXSI +
+ ( R1IN(,3) - R1IN(I,1) ) * CETA +
+ ( RO1(D - R1IN(IN1) ) * POT + RLN1(D)
A1(I) = ISGN(EIN(N1)) * LIN(N1)/(4*AREAIN) * A1(D
2049 CONTINUE
A = JI * JTWUO4P * CDOT(RHOIM,A1)
CFX = ISGN(EIM(MM1)*L1M(M1)/AREAIM*A+P)
CF = CF + CFX*WGHT()
2051 CONTINUE
CX11 = CF * AREAIM

C
ENDIF
c
DO 3001 J=12
DO 3001 K=1,2

IF (M(K)NE.O.AND.N(J)NE.O) THEN
IFOIM(K)NE.N(J)) THEN
CZIM(K)NQ)) = CZM(K)N(J)) + SGNPOT(CX11,JK)/2
CZINOIM(K)) = CZIN(DMK)) + SGNPOT(CX11,J,K)/2
ELSE
CZIMK)N()) = CZIM(KIN(J)) + SGNPOT(CX11,5K)
ENDIF
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ENDIF
CONTINUE
ENDIF
CONTINUE
ENDIF
CONTINUE
CONTINUE
CONTINUE

Cm

147

OPEN(FILE="CZ11' STATUS="NEW",DISPOSE~'DELETE,,

+ UNIT=31,FORM="UNFORMATTED’)

DO 147 J=1,KUNKNS
WRITE(31XCZ(1)),I=1,])

C +rrrociceioet

C
C

TYPE *’ CZ11 COMPLETED’

RETURN
END

SUBROUTINE ZPLPL13(CZ,JUNKNS,NUNKNS)

INTEGER JUNKNS,NUNKNS

COMPLEX JLA,P,SGNPOT

COMPLEX CVEC1,CXSI1,CETA1,CPHI1,A2(3),CDOT
COMPLEX CZ(JUNKNS,NUNKNS),CX13,CF,CFX
COMPLEX KN1,JWU14PX14PWE,JWE14P,X14PWU
REAL PLKN,JWUO4P,X14PJE JWEO4P,X14PJU,X14PI
REAL MAGNLGTAREA,AREAIN,VDOT,AREA 1IM,TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),L1N(3)

REAL R11M(3,3),R1M(3),RCIM(3),RHOIM(3),R11N(3,3)
REAL XSIK(7).ETA(7),WGHT(7)

INTEGER NNODES,NEDGES,NFACES,NWCRDS,NWSEGS
INTEGER JNODES,JEDGES,JFACESJWCRDS,JWSEGS
INTEGER LJKM(2)MOM1,N(2)NON1,MAPMAP1
INTEGER E1M(3),EIN(3),ISGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/DIMEN/NNODES,NEDGES,NFACES
COMMON/DIMWR/NWCRDS,NWSEGS
COMMON/CDIMEN/JNODES,JEDGES,JFACES
COMMON/CDIMWR/JTWCRDS,JWSEGS
COMMON/CONST/PLKN,JLYWUO4P,X14PJE,JWEO04P X 14PJU
COMMON/CONST1/KN1,JWU14P,X14PWE,X14PLYWE14P X14PWU
COMMON/NUMINT/XSLETA,WGHT

EXTERNAL MAGNLGTAREA,VDOTMAPMAP1
EXTERNAL SGNPOTJISGN,CDOT
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. C

C source triangles

C

, DO 2005 NO=1,JFACES

) CALL VTXCRD1(NOR11N)
AREAIN = GTAREA(R1IN,PLATE)
CALL LENGTH(R11N,L1N)

CALL FACEDG1(NO,E1IN(1),E1N(2),E1IN(3))

P L

Cc

. C observation triangles

i C

¥ DO 2004 MO=1,NFACES

CALL VTXCRD(MO,R11M)
AREAIM = GTAREA(R11M,PLATE)
CALL CENTER(R11M,RCIM,PLATE)
CALL LENGTH(R1IM,LIM)

. CALL FACEDG(MO,E1M(1),E1M(2),E1M(3))
Cc

C compute integrals

C

A%

of "tk

CALL NINT7A(R11NRCIM,CVEC1,CXSI1,CETA1,POT,CPHI1,
¥, + RLN1,RO1,AREAIN,DR)

2 DO 2003 N1=1PLATE
: N(1) = MAP1(NON1,PLATE)
N(Q2) = MAP1(NON1+PLATEPLATE)
IF (N(1)NE.O.ORN(2)NE.O) THEN
P = ISGN(EIN(N1)) * LIN(N1)/AREAIN * (-JI) * X14PWE * CPHI1
DO 2001 I=1,3
A2(D = ( R11N(I,1) - R1IN(IN1) ) * CVEC1 +
+ ( R1IN(1,2) - R1IN(L,1) ) * CXSI1 +
+ ( R1IN(L,3) - R1IN(I,1) ) * CETA1 +
+ ( RO1(D) - R1IN(IN1) ) * POT + RLNI(I)
A2(I) = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1IN) * A2(D)
2001 CONTINUE
C

f W W o QDY

DO 2002 M1=1PLATE

M(1) = MAP(MOM1,PLATE)

M(2) = MAP(MOM1+PLATEPLATE)

IF (M(1)NE.O.ORM(2)NEO) THEN
CALL P1RHO(R11IMM1,RHOIM)
A = -JI * JWU14P * CDOT(RHO1M,A2)
CX13 = ISGNEEIMM1DPLIM(M1)*A+P)

17l W

(R At aana

IF (DRLTLIM(1).ORDRLT.LIM(2).ORDRLT.LIM(3)) THEN

do the 7-pt integration over the observation triangle

aQaaoa O

CF =0

CFX = 0

DO 2051 I=1,7
DO 2050 JJ=1,3

)

-----------------------

)
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RIM(JD) = R11MQJ,1) + (R11M(QJJ,2)-R11IMQIJ,1)PXSID) +
+ (R11M(J73,3)-R11MQJ,1)*ETAQD
RHOIM(ID) = RIMUJ)-R11MUJIM1)
2050 CONTINUE
CALL NINT7A(R11N,R1IM,CVEC1,CXSI1,CETA1,POT,CPHI1,
+ RLN1,RO1,AREAIN,TRASH)
P = ISGN(EIN(N1)) * LIN(N1)/AREA1N * (-JI) * X14PWE * CPHI1
DO 2049 I=1,3
A2(D = ( R1IN(L1) - R11IN(IN1) ) * CVEC1 +
+ ( R1IN(I2) - R1IN(,1) ) * CXSI1 +
+ ( R1IN(,3) - R11IN(L,1) ) * CETA1 +
+ ( ROI(D - R1IN(LN1) ) * POT + RLN1(D)
A2(I) = ISGN(EIN(N1)) * L1IN(N1)/(4*AREAIN) * A2(D
2049 CONTINUE
A = -JI * JWU14P * CDOT(RHOIM,A2)
CFX = ISGN(EIMMMD)LIM(M1)/AREAIM*A+P)
CF = CF + CFX*WGHT(D)
2051 CONTINUE
CX13 = CF * ARFAIM

C
ENDIF

C

DO 3001 J=12

DO 3001 K=12

IF (M(K).NE.O.ANDN(J)NEO) THEN

CZINOOMK)) = CZINOOMK)) + SGNPOT(CX13,JK)/2
ENDIF

3001 CONTINUE

ENDIF
2002 CONTINUE

ENDIF

2003 CONTINUE

2004 CONTINUE

2005 CONTINUE

C

C KRRk eE
OPEN(FILE="CZ4’,STATUS="NEW",DISPOSE~'DELETFE’,
+ UNIT=24,FORM="UNFORMATTED’)
DO 147 J=1,NUNKNS

147 WRITE(24XCZ(L)),]=1,JUNKNS)

C weccracseers

C
TYPE *’ CZ13 COMPLETED’
C
RETURN
END
C
SUBROUTINE ZPLPL14(CZJUNKNS,NUNKNS)
C
INTEGER JUNKNS,NUNKNS
COMPLEX JLA,P,SGNPOT
COMPLEX CVECK1,CXSIK1,CETAK1,A2(3),A4(3),CDOT
x‘ " a YRS NS TR \»' S T R R D S A A A PP S R Tl G "'-'
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COMPLEX CZ(JUNKNS,NUNKNS),CX14,CF,CFX
COMPLEX KN1,JWU14P,X14PWEJWE14PX14PWU
REAL PILKN,JWUO4P,X14PJE JWEO4P,X14PJU X14PI
REAL MAGNLGTAREA,AREAIN,VDOT,ARE/ ‘M, TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),L1N(3)

REAL R11M(3,3)R1M(3),RCIM(3)RHOIM(3),R11N(3,3)
REAL RI(3),RIMRCM(3),RCMXRI(3)

REAL XSI(7).ETA(7),WGHT(7)

INTEGER NNODES,NEDGES,NFACES,NWCRDS,NWSEGS
INTEGER INODESJEDGESJFACESJWCRDS,JWSEGS
INTEGER LJKM(2)MOM1,N(2)NON1,MAPMAP1
INTEGER E1M(3),EIN(3),JSGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/DIMEN/NNODES,NEDGES,NFACES
COMMON/DIMWR/NWCRDS,NWSEGS
COMMON/CDIMEN/JNODES,JEDGES,JFACES
COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONST/PLKN,JLYWUO4P, X 14PJE,JWEO4P,X14PJU
COMMON/CONST1/KN1,JWU14P X14PWE,X14PLTWE14P,X14PWU
COMMON/NUMINT/XSLETA,WGHT

EXTERNAL MAGNLGTAREA,VDOTMAPMAP1
EXTERNAL SGNPOT,ISGN,CDOT

C source triangles

C

Cc

DO 2005 NO=1,JFACES

CALL VTXCRD1(NO,R11N)

AREAIN = GTAREA(R11IN,PLATE)
CALL LENGTH(R11N,LIN)

CALL FACEDG1(NO,EIN(1),EIN(2),EIN(3))

C observation triangles

C

C

DO 2004 MO=1NFACES

CALL VTXCRD(MO,R11M)

AREAIM = GTAREA(R11M,PLATE)
CALL CENTER(R11IM,RCIM,PLATE)
CALL LENGTH(R11IM,L1M)

CALL FACEDG(MO,E1IM(1),E1M(2),E1M(3))

C compute integrals
C

Cc

o oty ¢

CALL NINT7O(R11N,RCIM,CVECK1,CXSIK1,CETAK1,AREAIN,DR)

DO 2003 N1=1PLATE
N(1) = MAP1(NO,N1,PLATE)
N(2) = MAP1(NON1+PLATE,PLATE)

192
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IF (N(1).NE.O.ORN(2).NE.0O) THEN
DO 2001 I=1,3
A2() = R11IN(1,1) * CVECK1 +
+ ( R1IN(1,2) - R11IN(,1) ) * CXSIK1 +
( R1IN(1L,3) - R11N(L,1) ) * CETAK1
RID) = R1IN(N1)
RIMRCM() = RI(I) - RCIM(D
CONTINUE
CALL CROSS2(RCIM,RLRCMXRD)
CALL CROSS3RIMRCM,A2,A4)
DO 2025 I-1,3
A2() = A4() + RCMXRI(D * CVECK1
A2() = ISGN(EIN(N1)) * LIN(N1)/(2*AREA1N) * A2(D
CONTINUE
DO 2002 Mi1=1PLATE
M(1) = MAP(MOM1,PLATE)
M(2) = MAP(MOM1+PLATEPLATE)
IF (M(1).NE.O.ORM(2)NE0) THEN
CALL P1RHO(R11MM1,RHOIM)
A = -X14PI * CDOT(RHOIM,A2)
CX14 = ISGN(EIM(M1)) * LIM(M1) * A

IF (DRLTL1IM(1).ORDRLTLIM(2).ORDRLT.LIM(3)) THEN

do the 7-pt integration over the observation triangle

CEF=0
CFX = 0
DO 2051 I=1,7
DO 2050 JJ=1,3
RIM()) = R11IM(UJ,1) + (R1IMUJI2)-R11IMUT,1DPFXSID) +
(R11M(37,3)>-R11MQJ,1)FETAD
RHOIM(JY) = RIMUI-R11IMQUIM1)
2050 CONTINUE
CALL NINT7C(R11IN,RIM,CVECK1,CXSIK1,CETAK1,AREA1IN,TRASH)
DO 2049 I=1,3
A2() = R1IN(I,1) * CVECK1 +
( R1IN(1,2) - R1IN(L1) ) * CXSIK1 +
( R11IN(,3) - R11IN(1,1) ) * CETAK1
RI(I) = R11N(IN1)
RIMRCM(D) = RI() - R1IM(D
2049 CONTINUE
CALL CROSS2(R1M,RLRCMXRI)
CALL CROSS3(RIMRCM,A2,A4)
DO 2048 I=1,3
A2(D = A4() + RCMXRI(D) * CVECK1
A2() = ISGN(EIN(N1)) * LIN(N1)/(4*AREAIN) * A2(D)
2048 CONTINUE
A = -X14P1 * CDOT(RHOIM,A2)
CFX = ISGN(EIM(M1)) * LIM(M1)/AREAIM * A
CF = CF + CFX*WGHT{D
2051 CONTINUE
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CX14 = CF * AREAIM

C
ENDIF
C
DO 3001 J=1,2
DO 3001 K=1,2
IF- (M(K)NE.O.ANDN(J)NE.O) THEN
CZINOMK)) = CZINOMK)) + SGNPOT(CX14,1K)/2
ENDIF
3001 CONTINUE
ENDIF
2002 CONTINUE
ENDIF

2003 CONTINUE

2004 CONTINUE

2005 CONTINUE

C

C Rk ER
OPEN(FILE="CZ8' STATUS="NEW’,DISPOSE='DELETE’,
+ UNIT=28,FORM="UNFORMATTED’)
DO 147 J=1NUNKNS

147 WRITE(28XCZ(1,3),I=1,JUNKNS)

C ERRKEEREREREEEE

(o
TYPE *' CZ14 COMPLETED’

Cc
RETURN
END

SUBROUTINE ZPLPL16(CZ,NUNKNS)

INTEGER NUNKNS

COMPLEX JLA,P,SGNPOT

COMPLEX CVEC1,CXSI1,CETA1,CPHI1,A2(3),CDOT
COMPLEX CZ(NUNKNSNUNKNS),CX16,CF,CFX
COMPLEX KN1JWU14PX14PWEJWE14P,X14PWU
REAL PLKNJWUO4PX14PJEJWE04P,X14PJU X14PI
REAL MAGNLGTAREA,AREAIN,VDOT,AREA1M,TRASH
REAL DR,POT,RLN1(3),R01(3),L1M(3),L1N(3)

REAL R11M(3,3),R1M(3),RCIM(3),RHOIM(3),R11N(3,3)
REAL XSK7)ETA(7),WGHI(7)

INTEGER NNODES,NEDGES,NFACESNWCRDS,NWSEGS
INTEGER 1LJJKM(2)MOM1N(2),NON1MAP,EIM(3),EIN(3)ISGN

INTEGER WIRE,PLATE
PARAMETER (WIRE=2)
PARAMETER (PLATE=3)

COMMON/DIMEN/NNODES,NEDGES,NFACES
COMMON/DIMWR/NWCRDS,NWSEGS
COMMON/CONST/PLKN,JL,TJWUO4P X 14PJE,JWEO4P X 14PJU
COMMON/CONST1/KN1,JWU14P,X14PWEX14PLIWE14P X14PWU

. AN N, e TR P A SRR R
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COMMON/NUMINT/XSLETA,WGHT

C
EXTERNAL MAGNLGTAREA,VDOTMAP
EXTERNAL SGNPOT,ISGN,CDOT
(o
C source triangles
(o
DO 2005 NO=1NFACES
CALL VTXCRD(NOR11N)
AREAIN = GTAREA(R1IN,PLATE)
CALL LENGTH(R11N,LIN)
CALL FACEDG(NO,EIN(1),EIN(2),EIN(3))
C
C observation triangles
C
DO 2004 MO=1NFACES
CALL VTXCRD(MOR11M)
ARFAIM = GTAREA(R11IM,PLATE)
CALL CENTER(R11M,RCIM,PLATE)
CALL LENGTH(R1IM,L1M)
CALL FACEDG(MO,E1M(1),E1IM(2),E1M(3))
(o

C compute integrals
C

CALL NINT7A(R1IN,RCIM,CVEC1,CXSI1,CETA1,POT,CPHI1,
+ RLN1,ROLLAREAIN,DR)

DO 2003 N1=1,PLATE

N(1) = MAP(NO,N1,PLATE)

N(2) = MAP(NON1+PLATEPLATE)

IF (N(1)NE.O.ORN(2)NE.0O) THEN

P = ISGN(EIN(N1)) * LIN(N1)/AREAI1N * JI * X14PWE * CPHI1

DO 2001 I=1,3

A2(I) = ( R11IN(I,1) - R1IN(IN1) ) * CVEC1 +
+ ( R1IN(,2) - R1IN(I,1) ) * CXSI1 +
+ ( R1IN(1,3) - R11IN(L,1) ) * CETA1l +
+ ( RO1(D) - R1IN(IN1) ) * POT + RLN1(D)
A2(D) = ISGN(EIN(N1)) * LIN(N1)/(2*AREAIN) * A2(D)
2001 CONTINUE

DO 2002 M1=1PLATE
M(1) = MAP(MOM1,PLATE)
M(2) = MAP(MOM1+PLATE,PLATE)
IF (M(1)NE.O.ORM(2)NE.0) THEN
CALL P1RHO(R11MM1,RHOIM)
A = JI * TWU14P * CDOT(RHOIM,A2)
CX16 = ISGN(EAIMM1)*L1M(M1){(A+P)

IF (DRLTLIM(1).ORDRLT.LIM(2)ORDRLT.LIM(3)) THEN

do the 7-pt integration over the observation triangle

aQaaa 0
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CF=0
CFX = 0
DO 2051 [=1,7
DO 2050 JJ=1,3
RIM(D) = R1IMUJ,1) + (R11MUI2)>-R11IMUI,1DPEXSIAD +
+ (R11M(J7,3)-R11MUJ,1)*ETAI)
RHOIM(J)) = RIMUJ)-R11IMJIM1)
2050 CONTINUE
CALL NINT7A(R11IN,RIM,CVEC1,CXSI1,CETA1,POT,CPHI1,
+ RLN1,RO1,AREA IN,TRASH)
P = ISGN(EIN(N1)) * LIN(N1)/AREA1IN * JI * X14PWE * CPHI1
DO 2049 I=1,3
A2(D = ( R11IN(,1) - R1IN(IN1) ) * CVEC1 +
( R1IN(1,2) - R1IN(,1) ) * CXSI1 +
( R1I1N(,3) - R1IN(L,1) ) * CETA1l +
( RO1(D) - R11N(IN1) ) * POT + RLN1(D
A2() = ISGN(EIN(N1)) * LIN(N1)/(4*AREA1N) * A2(D
2049 CONTINUE
A = JI * JWU14P * CDOT(RHO1M,A2)
CFX = ISGN(EIM(M1)PL1M(M1)/AREAIM*A+P)
CF = CF + CFX*WGHT(II)
2051 CONTINUE
CX16 = CF * AREAIM

+ + +

C
ENDIF
C
DO 3001 J=12
DO 3001 K=12
IF (M(K)NE.O.ANDN(J)NEO) THEN
IFIM(K)NEN(QJ)) THEN
CZM(KINQ)) = CZIMK)INQ)) + SGNPOT(CX16,JK)/2
CZINOOM(K)) = CZINODM(K)) + SGNPOT(CX16,J,K)/2
ELSE
CZIMKINQ)) = CZIM(K)NQ)) + SGNPOT(CX16,JK)
ENDIF

ENDIF
3001 CONTINUE
ENDIF
2002 CONTINUE
ENDIF
2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
g EROEREEREEES
OPEN(FILE="CZ16’ STATUS="NEW’,DISPOSE="DELETE,,
+ UNIT=36,FORM="UNFORMATTED")
DO 147 J=1,NUNKNS
147 WRITE(36XCZ(1,]),I=1,])
C AoRKIEikE
C
TYPE *’ CZ16 COMPLETED’
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C
RETURN
END

Cc

C

COMPLEX FUNCTION SGNPOT(PM1,N1)
C USED FOR MULTIPLE EDGE CONNECTIONS
INTEGER M1N1
COMPLEX P
SGNPOT = P
IF (M1.NE.1) SGNPOT = -SGNPOT
IF (N1NE.1) SGNPOT = -SGNPOT
RETURN
END
C
C vector functions
C
C for use with z-matrix
C
SUBROUTINE COPY(V1,V2)
REAL Vi1(3),v2(3)
INTEGER 1
DO 2001 I=1,3
V2(D=V1(D
2001 CONTINUE
RETURN
END

REAL FUNCTION VDOT(V1,V2)

INTEGER 1

REAL V1(3),v2(3)

VDOT = 0

DO 2001 I=1,3

VDOT = VDOT + Vi(D*V2(I)

2001 CONTINUE

RETURN

END

COMPLEX FUNCTION CDOT(V1,V2)
INTEGER 1
REAL V1(3)
COMPLEX V2(3)
CDOT = 0
DO 2001 I=1,3
CDOT = CDOT + V1i(I»Vv2()
2001 CONTINUE
RETURN
END

REAL FUNCTION MAGNI(V)
REAL VDOT
REAL V(3)

‘‘‘‘‘‘
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EXTERNAL VDOT
MAGNI=SQRT(VDOT(V,V))

RETURN

END

SUBROUTINE UNIT(V1,V2)
INTEGER 1
REAL V1(3),v2(3)
REAL MAGNLR
EXTERNAL MAGNI
R=MAGNI(V1)
DO 2001 I=1,3
V2(D=V1(I/R
CONTINUE
RETURN
END

SUBROUTINE CENTER(VTX,V,CASE)
REAL VTX(3,3),V(3)
INTEGER LJ,CASE
DO 2002 I=1,3
V(D=0
DO 2001 J=1,CASE
VD=VIO+VTX(Y)
CONTINUE
V(D=V()/CASE
CONTINUE
RETURN
END

SUBROUTINE MIDPTS(VTX,V)
REAL VTX(3,3),V(3,3)
INTEGER LJX
EXTERNAL MAGNI
DO 2002 I=1,3
J=MOD(L,3)+1
K=MOD(J,3}+1
DO 2001 L=1,3
VLD = ( VIXIL,) + VIX(LK) ) 7 2
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE LENGTH(VTX,S)
REAL VTX(3,3),V(3)
REAL S(3)MAGNI
INTEGER 1JX
EXTERNAL MAGNI
DO 2002 I=1,3
J=MOD(I,3}+1
K=MOD(J,3)+1

..................

198




Appendix D. EFIE2PC Computer Program

DO 2001 L=-1,3
V(L)=VTX(LJ)}VTX(LXK)
2001 CONTINUE
S(D=MAGNI(V)
2002 CONTINUE
RETURN
END
C
REAL FUNCTION GTAREA(VTX,CASE)
REAL MAGNI
REAL V(3),VTX(3,3)
INTEGER LCASE
EXTERNAL MAGNI
C
C ”area” of wire segment = length
C "area” of triangle is 1/2 cross product of two sides
o
IF (CASEEQ.2) THEN
DO 2001 I=1,3
V(D = VTX(1,2) - VTX({L1)
2001 CONTINUE
GTAREA=MAGNI(V)
ELSE IF (CASEEQ.3) THEN
CALL CROSS1(VTX,V)
GTAREA=MAGNI(V)/2
ENDIF
RETURN
END

SUBROUTINE CROSS1(VTX,V)
REAL VTX(3,3),V(3)
INTEGER LJK

DO 2001 I=1,3

J=MOD(L,3)+1

K=MOD(J,3)}+1

V) = (VTX(J2)>VTX(,1)) * (VTX(K,3)»VTXEK,1)) -
+ (VTX(Q,3>-vTX(,1)) * (VTX(K,2)>-VTX(K,1))

2001 CONTINUE

RETURN
END

SUBROUTINE CROSS2(V1,V2,V3)
REAL V1(3),v2(3),V3(3)
INTEGER LJK
DO 2001 I=1,3
J=MOD(I,3)+1
K=MOD(J,3+1
V3D = VIQrV2K) - VIEK*V2)
2001 CONTINUE
RETURN

END
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SUBROUTINE CROSS3(V1,V2,V3)
REAL V1(3)
COMPLEX V2(3),V3(3)
INTEGER LJK
DO 2001 I=1,3
J=MOD(1,3)+1
K=MOD(J,31+1
V3D = VIQrV2AK) - VIK»V2)
2001 CONTINUE
RETURN
END

INTEGER FUNCTION MAP(LJ,CASE)
INTEGER LJ,CASE
INTEGER NNODES,NEDGESMAPUNK(1),SEG(4,1),NBOUND(6,1)
COMMON/DIMEN/NNODES,NEDGES
COMMON/MAPUS/MAPUNK
COMMON/SWIRE/SEG
COMMON/PLAT3/NBOUND
IF (CASE.EQ.2) THEN
MAP = ABS(SEG(J,D)
IF (MAPNE.O) MAP=MAPUNK(NEDGES+MAP)
ELSE IF (CASE.EQ.3) THEN
MAP=ABS(NBOUND(J,]))
: IF (MAPNE.O) MAP=MAPUNK(MAP)
. ENDIF
, RETURN
END

INTEGER FUNCTION MAP1(1,J,CASE)
INTEGER LJ,CASE
INTEGER JNODESJEDGES,MAPUNKJ(1),SEGJ(4,1)JBOUND(6,1)
COMMON/CDIMEN/INODES,JEDGES
: COMMON/CMAPUS/MAPUNKJ
. COMMON/CSWIRE/SEGJ
- COMMON/CPLAT3/JBOUND
IF (CASEEQ.2) THEN
MAP1 = ABS(SEGJ(J,I))
IF (MAP1.NE.O) MAP1=MAPUNKJ(JEDGES+MAP1)
ELSE IF (CASE.EQ.3) THEN
MAP1=ABS(JBOUND(J,1))
IF (MAP1NE.O) MAP1=MAPUNKJ(MAP1)
ENDIF
RETURN
END

¢ INTEGER FUNCTION MAP2(1,J,CASE)

; INTEGER LJ,CASE

X INTEGER KNODES,KEDGESMAPUNKK(1),SEGK(4,1),KBOUNIX6,1)

i COMMON/KDIMEN/KNODES,KEDGES
COMMON/KMAPUS/MAPUNKK

COMMON/KSWIRE/SEGK

.....................................
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COMMON/KPLAT3/KBOUND
IF (CASEEQ2) THEN
MAP2 = ABS(SEGK(J,D))
IF (MAP2NEO) MAP2=MAPUNKK(KEDGES+MAP2)

IF (MAP2NE.O) MAP2=MAPUNKK(MAP2)
ENDIF

RETURN

END

SUBROUTINE GETRHO(VTX,V)
INTEGER 1
REAL VTX(3,3),V(3)
DO 2001 I=1,3
V@ = ( vIX(2) - VTX@L1) ) /7 2
2001 CONTINUE
RETURN
END

SUBROUTINE P1RHO(VTX,LV)
REAL VTX(3,3),V(3)
INTEGER LJKL
J=MOD(1,3+1
K=MOD(J,3)}+1
DO 2001 L=1,3
VL) = ( VIXI@L)) + VIX(LK) ) /7 2
V) = ( V(L) - VIX(LD ) / 3
2001 CONTINUE
RETURN
END

this routine returns the edges of face F on the perfect conductor

SUBROUTINE FACEDG(F,E1,E2,E3)

aQ oo

INTEGER E1,E2,E3F
INTEGER NBOUND(6,1)
COMMON/PLAT3/NBOUND

E1=NBOUNIX1,F)
E2=NBOUND(2,F)
E3=NBOUND(3,F)
RETURN
END
C
C this routine returns the edges of face F on the coating
C
SUBROUTINE FACEDG1(F,E1,E2,E3)
C

INTEGER E1,E2,E3F
INTEGER JBOUNIX6,1)

.......................................................
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' COMMON/CPLAT3/JBOUND

‘ E1=JBOUND(1,F)
E2=JBOUND(2,F)
E3=JBOUND(3,F)
RETURN

END

P . I

is routine returns the edges of face F on the coating

SUBROUTINE FACEDG2(FE1,E2,E3)

O aaa
3

g .

INTEGER E1,E2E3F
INTEGER KBOUND(6,1)
COMMON/KPLAT3/KBOUND

\ E1=KBOUNIX1,F)
& E2=-KBOUND(2,F)
- E3=KBOUND(3,F)
¥ ) [ ] REI'URN
. END

this routine returns the vertices of face F on the perfect conductor
v(i,)) = vertex opposite jth edge; iml=X, im2=y, j=3=z

SUBROUTINE VTXCRIDXF,V)

Q aaaa

INTEGER LJFE1E2E3P(3),NCONN(2,1)
. REAL V(3,3),DATNOD(4,1)
by COMMON/PLAT1/DATNOD
. COMMON/PLAT2/NCONN

Q

CALL FACEDG(F.E1,E2,E3)

IF (E1.GT.0) THEN
P(2)=NCONN(1,E1)
P(3)=NCONN(2,E1)

ELSE
P(2)=NCONN(2,-E1)
P(3)=NCONN(1,-E1)
ENDIF

IF (E2.GT.0) THEN
P(1)=NCONN(2,E2)

ELSE
P(1)=NCONN(1,-E2)
ENDIF

E\“

(5Zi

DO 2002 I=1,3
DO 2001 J=1,3
V(J,D=DATNOD(.P(I))
2001 CONTINUE

-f""
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2002 CONTINUE '

C :1:

RETURN ;

END -
C L
C this routine returns the vertices of face F on the coating :
C v(i,)) = vertex opposite jth edge; iml=X, jm2=y, i=3=z :
C N

SUBROUTINE VTXCRDI1(F,V) i
C

INTEGER LJ,F,E1,E2,E3,P(3),JCONN(2,1)

REAL V(3,3),CDATNOD(4,1) &
COMMON/CPLAT1/CDATNOD o)
COMMON/CPLAT?2/JCONN :

CALL FACEDGI(FE1,E2,E3)

IF (E1.GT.0) THEN .
P(2)=JCONN(1,E1) '
P(3)=JCONN(2,E1)

ELSE
P(2)=JCONN(2,-E1)
P(3)=JCONN(1,-E1)
ENDIF

s"

& £, o

IF (E2.GT.0) THEN ¥
P(1)=JCONN(2,E2)
ELSE .
P(1)=JOONN(1,-E2) ;
ENDIF

DO 2002 I=1,3 B

DO 2001 J=1,3 -
V(Q,D=CDATNOD(J,IXI)) R

2001 CONTINUE iy
2002 CONTINUE '
C
‘.

END

this routine returns the vertices of face F on the coating e
v(i,)) = vertex opposite jth edge; imle=x, im2=y, im3=z :

SUBROUTINE VTXCRD2(F,V) )

O aaaan

INTEGER LJ,F,E1,E2,E3,P(3),KCONN(2,1)
REAL V(3,3)KDATNOD(4,1)
COMMON/KPLAT1/KDATNOD
COMMON/KPLAT2/KCONN

M2y N PP

CALL FACEDG2(F,E1,E2E3)
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IF (E1.GT.0) THEN
P(2)=KCONN(1,E1)
P(3)=KCONN(2,E1)

ELSE
P(2)=KCONN(2,-E1)
P(3)=KCONN(1,-E1)
ENDIF

IF (E2.GT.0) THEN
P(1)=KCONN(2,E2)
ELSE
P(1)=KCONN(1,-E2)
ENDIF

DO 2002 I=1,3

DO 2001 J=1,3

V@, D=KDATNOD(J,XD)
CONTINUE

CONTINUE

RETURN
END

this routine returns the endpoints of segment I on perfect conductor
vtx(i,1) is the lower numbered endpoint
SUBROUTINE ENDPTS(LVTX)
REAL VTX(3,3),WR(4,1)
INTEGER LJXK,SEG(4,1)
COMMON/RWIRE/WR
COMMON/SWIRE/SEG
DO 2002 J=12
DO 2001 K=1,3
VTX(K,J)=WR(K,SEG(,))
2001 CONTINUE
2002 CONTINUE
RETURN
END

this routine returns the endpoints of segment I on coating
vtx(i,1) is the lower numbered endpoint

SUBROUTINE ENDPTSI(LVTX)
REAL VTX(3,3),CWR(4,1)
INTEGER 1,JK.SEGJ(4,1)
COMMON/CRWIRE/CWR
COMMON/CSWIRE/SEGJ

DO 2002 J=12
DO 2001 K=1,3
VTXED=CWR(K SEGI(J,I)
2001 CONTINUE
2002 CONTINUE
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RETURN
END

SN, 8

this routine returns the endpoints of segment I on coating
vtx(i,1) is the lower numbered endpoint

anan

TR,

SUBROUTINE ENDPTS2(L,VTX)
REAL VTX(3,3)KWR(4,1)
INTEGER LJK,SEGK(4,1)
COMMON/KRWIRE/KWR .
COMMON/KSWIRE/SEGK h
DO 2002 J=1,2
DO 2001 K=1,3
VTXE, ) )=KWREK,SEGK(,))
2001 CONTINUE
2002 CONTINUE
RETURN
END

LA

a
2y vy uy

REAL FUNCTION GETRAD(I,CASE)
REAL WR(4,1)
INTEGER 1,CASE,SEG(4,1)
COMMON/RWIRE/WR
COMMON/SWIRE/SEG
IF (CASEEQ.2) THEN
GETRAD=( WR(4,SEG(1))) + WRM4,SEG(RD) ) / 2
ELSE IF (CASEEQ.3) THEN
GETRAD=0
ENDIF
RETURN
END

5 b

Vi

T e s
SUNTAT,

REAL FUNCTION GETRADI(I,CASE) =
REAL CWR(®4,1) ’
INTEGER I,CASESEGJ(4,1)
COMMON/CRWIRE/CWR
COMMON/CSWIRE/SEGJ
IF (CASEEQ.2) THEN
GETRAD1-({ CWR(4,SEGJ(1,])) + CWR(4,SEGI(2D) ) / 2
ELSE IF (CASEEQ.3) THEN
GETRAD1=0
ENDIF
RETURN
END

‘ N "V;"‘. I"

&

} St AR NS

REAL FUNCTION GETRAD2(I,CASE)
REAL KWR(4,1)
INTEGER I,CASESEGK(®4,1)
COMMON/KRWIRE/KWR
COMMON/KSWIRE/SEGK
IF (CASEEQ.2) THEN
GETRAD2=( KWR(4,SEGK(1,])) + KWR(4,SEGK(2,)) ) / 2
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ELSE IF (CASEEQ.3) THEN
GETRAD2=0
ENDIF
RETURN
END
o
C sign function
C

- W W e

INTEGER FUNCTION ISGN(C)
INTEGER C
> IF (CNE.O) THEN
ISGN=C/ABS(C)
ELSE
ISGN=0
ENDIF
RETURN
N END
, C
C sign function
C
' INTEGER FUNCTION RSGN(C)
REAL C
IF (CNE.O) THEN
RSGN=C/ABS(C)
ELSE
RSGN=0
ENDIF
RETURN
3 END
C
Cthis routine employs a 7-point numerical integration rule and
Canalytical integration to evaluate the vector and scalar potential
Cintegrals over a triangular region.

£

C
SUBROUTINE NINT7(VX,V1,CVEC,CXSLCETA,POT,CPHI,P1,RC1,AREA DIST)
= C
A C VX(3,3) are the vertices of the source triangle
C V1(3) are the coordinates of the observation centroid .
C
COMPLEX JILCF,CFX,CFN,CF1,CVEC,CXSLCETA,CPHI
REAL XSI(7).ETA(7),WGHT(7)
REAL PLKN,R1(3),P1(3),RC1(3)
REAL DRMAGNILALIMIT POT,AREA,DIST
REAL VX(3,3),V1(3)
INTEGER LJ r
C
COMMON/CONST/PLKNJ1
. COMMON/NUMINT/XSLETA,WGHT f
N EXTERNAL MAGNI !
: C
PARAMETER (ALIMIT=1D-10)
C L
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DATA XSI/ 0.3333333333, 0.05971587, 047014206,
+ 047014206, 0.79742699, 0.10128651,0.10128651/
DATA ETA/ 0.3333333333, 0.47014206, 0.05971587,
+ 0.47014206, 0.10128651, 0.79742699,0.10128651/
DATA WGHT/ 0225, 0.13239415, 0.13239415,
+ 0.13239415, 0.12593918, 0.12593918,0.12593918/
CF=0
CFX=0
CFN=0
DIST = 0
; DO 2002 I=1,7
¢ DO 2001 J=1,3
r R1()) = (V1Q)»VX(Q,1) - (VX(U2)}VvXQ,0FXSID) -
¢ +  (VX(,3)>-VXU,DPETAD
2001 CONTINUE
DR=MAGNI(R1)
IF (LEQ.1) THEN
DIST = DR
ELSE IF (DRLT.DIST) THEN
DIST = DR
ENDIF
IF (DRLE.ALIMIT) THEN
CF1=-JI'KN
ELSE
CF1=(EXP(-JI'KN*DR)-1)/DR
ENDIF
CF=CF+CF1*WGHT(I)
CFX=CFX+CF1*WGHT{I*XSI(I)
CFN=CFN+CF1*WGHT(*ETA(D)
2002 CONTINUE

£ 0 A s s -

- w W e w

(i Jef hd F |
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CVEC = CF * AREA
CXSI = CFX * AREA
CETA = CFN * AREA

CALL INTGRL(VX,V1,POT,P1RC1,AREA)
CPHI=CVEC+POT

. RETURN

END

PR Nl N

C

Cthis routine employs a 7-point numerical integration rule and

Canalytical integration to evaluate the vector and scalar potential

Cintegrals over a triangular region.

C
SUBROUTINE NINT7A(VX,V1,CVEC1,CXSI1,CETA1,POT,CPHI1,P1,RC1,
+ AREA DIST)

VX(3,3) are the vertices of the source triangle
V1(3) are the coordinates of the observation centroid

aQaa

COMPLEX JI,CF,CFX,CFN,CF1,CVEC1,CXSI1,CETA1,CPHI1 KN1
) REAL XSK7)ETA(7),WGHT(7)
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REAL PLKN,R1(3),P1(3)RC1(3)

REAL DRMAGNLALIMIT,POT,AREA,DIST
REAL VX(3,3),V1(3)

INTEGER 1J

COMMON/CONST/PLKN,JI
COMMON/CONST1/KN1
COMMON/NUMINT/XSLETA,WGHT
EXTERNAL MAGNI

PARAMETER (ALIMIT=1D-10)

CF=0
CFX=0
CFN=0
DIST = 0
DO 2002 I=1,7
DO 2001 J=1,3
R1(D) = (V1(0)-vX(J,1)) - (VX(2)>-VXJ,1)»XSIA) -
+  (VX(Q,3)-VXQ,1)»ETAD
2001 CONTINUE
DR=MAGNI(R1)
IF (LEQ.1) THEN
DIST = DR
ELSE IF (DRLTDIST) THEN
DIST = DR
ENDIF
IF (DRLE.ALIMIT) THEN
CF1=-JI*KN1
ELSE
CF1=(EXP(-JI*'KN1*DR)-1)/DR
ENDIF
CF=CF+CF1*WGHT()
CFX=CFX+CF1*WGHT({*XSI(I)
CFN=CFN+CF1*WGHTU*ETA(I)
CONTINUE

CVEC1 = CF * AREA
CXsI1 = CFX * AREA
CETA1 = CFN * AREA

CALL INTGRL(VX,V1,POT,P1,RC1,AREA)

CPHI1 = CVEC1 + POT

RETURN

END
C
Cthis routine employs a 7-point numerical integration rule and
Canalytical integration to evaluate the vector and scalar potential
Cintegrals over a triangular region.
C

SUBROUTINE NINT7B(VX,V1,CVECKO,CXSIKO,CETAKO,AREA,DIST)

Cc
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C VX(3,3) are the vertices of the source triangle
C V1(3) are the coordinates of the observation centroid
C
COMPLEX JI,CF,CFX,CFN,CF1,CVECKO,CXSIKO,CETAKO
REAL XSI(7)ETA(7),WGHT(7)
REAL PLKNJR1(3)
REAL DRMAGNILAREA,DIST
REAL VX(3,3),V1(3)
INTEGER 1J

COMMON/CONST/PLKN,JI
COMMON/NUMINT/XSLETA,WGHT
EXTERNAL MAGNI

CF=0
CFX=0
CFN=0
DIST = 0
DO 2002 I=1,7
DO 2001 J=1,3
R1(3) = (V10)»VX(,1) - (VXJ2)-VXQ,0PXSID -
+  (VX(,3)-VXU,DXETAD
2001 CONTINUE
DR=MAGNI(R1)
IF (LEQ.1) THEN
DIST = DR
ELSE IF (DRLT.DIST) THEN
DIST = DR
ENDIF
CF1=(1+JI*KN*DREXP(-JI*KN*DR))/(DR*DR*DR)
CF = CF + CF1 * WGHT(D
CFX= CFX + CF1 * WGHT(I) * XSI
CFN= CFN + CF1 * WGHT() * ETA(D
2002 CONTINUE

C
CVECKO = CF * AREA
CXSIKO = CFX * AREA
CETAKO = CFN * AREA
C
RETURN
END
C

Cthis routine employs a 7-point numerical integration rule and
Canalytical integration to evaluate the vector and scalar potential
Cintegrals over a triangular region.
C

SUBROUTINE NINT7CQ(VX,V1,CVECK1,CXSIK1,CETAK1,AREA,DIST)
C
C VX(3,3) are the vertices of the source triangle
C V1(3) are the coordinates of the observation centroid
Cc

COMPLEX JI,CF,CFX,CFN,CF1,CVECK1,CXSIK1,CETAK1,KN1

................... ..
.........
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REAL XSIK(7)ETA(7),WGHT(7)
REAL PLKN,R1(3)

REAL DRMAGNLAREA,DIST
REAL VX(3,3),V1(3)
INTEGER 1)

COMMON/CONST/PLKN,JI
COMMON/CONST1/KN1
COMMON/NUMINT/XSLETA,WGHT
EXTERNAL MAGNI

CF=0
CFX=0
CFN=0
DIST = O
DO 2002 I=1,7
DO 2001 J=1,3
R1() = (V10)VvX(,1)) - (VXU,2>-VXJ,D»XSID) -
+  (VX(,3)-VXQ,1)»ETAD
2001 CONTINUE
DR=MAGNI(R1)
IF (LEQ.1) THEN
DIST = DR
ELSE IF (DRLT.DIST) THEN
DIST = DR
ENDIF
CF1=(1+JI*KN1*DREXP(-JI*KN1*DR))/(DR*DR*DR)
CF = CF + CF1 * WGHT()
CFX= CFX + CF1 * WGHTQD) * XSI(D)
CFN= CFN + CF1 * WGHT(I) * ETA(D)
2002 CONTINUE

CVECK1 = CF * AREA
CXSIK1 = CFX * AREA
CETAK1 = CFN * AREA

O

RETURN
END

this subroutine, with the help of subroutine ca, evaluates

the 1/r integral over a triangular region and the line integral
of (r times the normal to the triangle boundary) over the
triangle boundary.

aaaaaan

SUBROUTINE INTGRL(VX,V1,POT,P1,RC1,AREA)

REAL PLVDOT,ALP,ALM,ZNOT,PO,POT,VAL1,VAL2,AREA
REAL VX(3,3),V1(3),UN1(3),UL1(3),UU1(3),T1(3),P1(3)RC1(3)
INTEGER 1J,K,SGN,RSGN

COMMON/CONST/PI

EXTERNAL RSGN,VDOT
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C
POT=0
C
C calculate unit normal = UN1
C
CALL CROSS1(VX,UN1)
DO 2001 I=1,3
UN1(D=UN1(I)/(2*AREA)
2001 CONTINUE
C

C ZNOT is the perpendicular (to the source triangle) distance

C between the source (vertex 1) and observation triangles

C

C RC1 is the nonperpendicular (“coplanar” according to source tri)
C vector from source (vertex 1) to observation triangles

C

C NOT USED call centroid(vtx,tl)
DO 2002 K=1,3
T1K)=V1(K)»VX(K,1)

2002 CONTINUE
ZNOT=VDOT(T1,UN1)

C
DO 2003 I=1,3
RC1(D=V1(D-ZNOT*UN1(D)
P1(D=0

2003 CONTINUE
ZNOT = ABS(ZNOT)

integrate over each edge
UL1 is unit edge

DO 2009 I=1,3

J=MOD(1,3+1

DO 2004 K=1,3

UL1(K)=VX(KI)-VXEK,D
2004 CONTINUE

CALL UNIT(UL1,UL1)

O Qaaaa

CALL CROSS2(UL1,UN1,UU1)
DO 2005 K=1,3
T1(K)=VX(K,D-RC1(K)
2005 CONTINUE
PO=VDOT(T1,UU1)
SGN=RSGN(PO)
PO=ABS(PO)
DO 2006 K=1,3
T1(K)=VX(KI)-V1(K)
2006 CONTINUE
ALP=VDOT(T1,UL1)
DO 2007 K=1,3
T1(K)=VX(K,D-V1(K)

211
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2007 CONTINUE
ALM=VDOT(T1,UL1)
CALL CA(PO,ZNOT,ALP,ALM,VAL1,VAL2)
POT=POT+VAL1*.3
DO 2008 K=1,3
P1(K)=P1(KH+UU1(K*VAL2

2008 CONTINUE

2009 CONTINUE

C
RETURN
END

C

C

C

C

SUBROUTINE CA(PO,D,ALP,ALM,VALA,VALL)
REAL PO,D,RO,RP,RM,ALP,ALMMIN,TOP,BOT
REAL LPILM,VALA,VALLALGTRM,ARGTNP,ARGTNM

C MIN depends on machine precision
C —use 1D-5 for 32 bit reals
C —can use 1D-8 for 64 bit reals

C
C

Cc

PARAMETER (MIN=1D-5)

RO = D**2 + P0*2
RP = SQRT( RO + ALP*2)
RM = SQRT( RO + ALM*2)
TOP = RP+ALP
BOT = RM+ALM
IF (ALPLT.O.AND.TOPLTMIN) TOP = RO/ABS(ALP)/2
IF (ALMLLT.O.ANDBOT.LTMIN) BOT = RO/ABS(ALM)/2
IF (ALPLT.OAND.ALM.LT.0.AND.TOP.LTMIN.AND.BOT.LTMIN) THEN
ALGTRM = LOG(ALM/ALP)
ELSE
ALGTRM = LOG(TOP/BOT)
ENDIF
IF (D.GT.0) THEN
ARGTNP=PO*ALP/(RO+D*RP)
ARGTNM=PO*ALM/(RO+D*RM)
VALA=PO*ALGTRM-DNATAN(ARGTNP)ATAN(ARGTNM))
ELSE
VALA=PO*ALGTRM
ENDIF
VALL=(RO*ALGTRM+ALP*RP-ALM*RM)/2

RETURN
END

C save matrix

C

SUBROUTINE SAFE(CZJUNKNS,KUNKNSNUNKNS,P)
INTEGER JUNKNS,KUNKNS,NUNKNS,P
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COMPLEX CZ(2*JUNKNS+KUNKNS+NUNKNS)
IF (P.EQ.1) THEN
REWIND(22)
REWIND(26)
DO 10 J=1JUNKNS
READ(22) (CZ(D),J=1,JUNKNS)
READX(26) (CZ(I)]=JUNKNS+1,JUNKNS+J)
WRITE(57) (CZ(D,J=1JUNKNS+))
CONTINUE
CLOSE(22)
CLOSE(26)
ELSE IF (PEQ2) THEN
REWIND(23)
REWIND(27)
REWIND(31)
DO 11 J=1,KUNKNS
READ(23) (CZ(I)]=1JUNKNS)
READ(27) (CZ(D,J=JUNKNS+1,2*JUNKNS)
READ(31) (CZ(D)J=2*JUNKNS+1,2*JUNKNS+J)
WRITE(57) (CZ(1),]=12*JUNKNS+J)
CONTINUE
CLOSE(23)
CLOSE(27)
CLOSE(31)
ELSE
REWIND(24)
REWIND(28)
REWIND(36)
DO 12 J=1,NUNKNS
READ(24) (CZ(D,I=1,JUNKNS)
READ(28) (CZ(D)J=JUNKNS+1,2*JUNKNS)
DO 20 L=1,KUNKNS
CZ(2*JUNKNS+L) = 0
CONTINUE
READ(36) (CZ(D),J=2*JUNKNS+KUNKNS+1,2*JUNKNS+KUNKNS+J)
WRITE(57) (CZ(1),I=1,2*JUNKNS+KUNKNS+J)
CONTINUE
CLOSE(24)
CLOSE(28)
CLOSE(36)
ENDIF

RETURN
END
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Appendix E

RADAR CROSS SECTION MEASUREMENTS AND PREDICTIONS

E.1 Introduction

This appendix contains the radar cross section (RCS) plots discussed in
Chapter 5. The graphs of the experimental RCS data generated from the experimental
RCS measurements performed at the MIT Lincoln Laboratory Group 95 RCS Mea-
surement Facility are contained in Section E.2. The graphs of the theoretical RCS
predictions generated from the EFIE series of computer programs discussed in Chapter

3 are contained in Section 3.3.

E.2 Experimental Radar Cross Section Measurements

This section contains the graphs of the experimental RCS data generated
from the experimental RCS measurements performed at the MIT Lincoln Laboratory
Group 95 RCS Measurement Facility. Each figure contains two RCS plots. The top plot
in each figure is the horizontally transmitted and horizontally received monostatic far-
field RCS (ohs) versus angle. Horizontally transmitted means the electric field of the
incident wave is polarized parallel to the edge of the square aluminum plate when the
incident wave is travelling in the plane of the plate and normal to an edge. The bottom
plot in each figure is the vertically transmitted and vertically received monostatic far-

field RCS (o,y) versus angle. Therefore, each figure contains the co-polarized RCS

plots for two orthogonally polarized incident electric fields.
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E.3 Theoretical Radar Cross Section Predictions

This section contains the graphs of the theoretical RCS predictions discussed
in Chapters 3 and 5. They were generated from the EFIE series of computer programs.
Each figure contains two RCS plots. The top plot in each figure is the horizontally
transmitted and horizontally received monostatic far-field RCS (or1) versus angle. Hor-
izontally transmitted means the electric field of the incident wave is polarized parallel
to the edge of the square plate when the incident wave is travelling in the plane of the
plate and normal to an edge. The bottom plot in each figure is the vertically trans-
mitted and vertically received monostatic far-field RCS (oy,) versus angle. Therefore,
each figure contains the co-polarized RCS plots for two orthogonally polarized incident

electric fields.
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Figure E.20. Theoretical monostatic 3.0 GHz RCS plots for Eccosorb SF 6.0 coated 10cm
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by 10cm square plate: (top) oxp versus angle and (bottom) o, versus angle
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Figure E.22. Theoretical monostatic 3.0 GHz RCS plots for Eccosorb SF 6.0 coated 10cm

by 10cm square plate: (top) onp versus angle and (bottom) oy, versus angle

(4 of 5)

ATt f o le e AT A L - LS MR LA AR C LA UR TR IR
.ct,AI\ .l .'."*' A \ e .4. 8 N 3 ‘J.. PO J'.".-' "" ‘“"'.' .



<N

e”

T

SIGMA-HH (DBSM--3 GHZ)

s TN TT

SIGMA-VV (DBSM--3 GHZ)

Appendix E. Radar Cross Section Measurements and Predictions

10 >

-5 ] 1 1 1 [ 1 1

-200 -150 -120 -SO@ %) 50 100 150 200

THETA (DEGREES--PHI1-0}

-19 F 2 2-1

-390 4

-40 -

_50 I L i L 1 1 A
-200 -15@ -128 -S5O © 50 190 150 200

THETA (DEGREES- -PHI-@]|

Figure E.23. Theoretical monostatic 3.0 GHz RCS plots for Eccosorb SF 6.0 coated 10cm
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Figure E.26. Theoretical monostatic 3.0 GHz RCS plots for Eccosorb FGM 40 coated
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Figure E.28. Theoretical monostatic 3.0 GHz RCS plots for Eccosorb FGM 40 coated

10cm by 10cm square plate: (top) opn versus angle and (bottom) oy, versus

angle (5 of 5)
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